Simplification of
Context-Free
Grammars and
Normal Forms

efore we can study context-free languages in greater depth, we must

attend to some technical matters. The definition of a context-{ree

gramunar imposes no restriction whatsoever on the right side of a

production. However, complete freedom is not necessary, and in [act,
is a detriment in some arguments. In Theorem 5.2, we saw the convenience
of certain restrictions on grammatical forms; eliminating rules of the form
A — Aand A — B made the arguments easier. In many instances, it is
desirable to place even more stringent restrictions on the grammar. Because
of this, we need to look at methods for transforming an arbitrary context-
free grammar into an equivalent one that satisfies certain restrictions on its
form. Tn this chapter we study several transformations and substitutions
that will be usetul in subsequent discussions,

We also investigate normal forms for context-free grammars. A nor-
mal form is one that, although restricted, is broad enough so that any
grammar has an cquivalent normal-form version. We introduce two of the
most useful of these, the Chomsky normal form and the Greibach nor-
mal form. Both have many practical and theoretical uses. An immediate
application of the Chomsky normal form to parsing is given in Section 6.3.

149

150

Chapter 6 SIMPLIFICATION O CONTEXT-FREE GRAMMARS AND NORMAL FORMS

The somewhat tedious nature of the material in this chapter lies in the
fact that many of the arguments are manipulative and give little intuitive
insight. For our purposes, this technical aspect is relatively unimportant
and can be read casually. The various conclusions are significant; they will
be used many times in later discussions.

Methods for Transforming Grammars

We first raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty string. The empty string
plays a rather singular role in many theorems and proofs, and it is often
necessary to give it special attention. We prefer to remove it from consider-
ation altogether, looking only at languages that do not contain A. In doing
s0, we do not lose generality, as we see from the following considerations.
Let L be any context-free language, and let G = (V,T, S, P) be a context-
free grammar for L — {\}. Then the grammar we obtain by adding to V
the new variable Sy, making Sy the start variable, and adding to P the
productions

Sa — S|A,

generates L. Therefore any nontrivial conclusion we can make for L - {A}
will almost certainly transfer to L. Also, given any context-free grammar

G, there is a method for obtaining G such that L (@) = L(G) — {A}

(see Exercise 13 at the end of this section). Consequently, for all practical
purposes, there is no difference between context-free languages that include
)\ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to A-free languages.

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitu-
tions. Here we give one that is very useful for simplifying grammars in
various way. We will not define the term simplification precisely, but we
will use it nevertheless. What we mean by it is the removal of certain types
of undesirable productions; the process does not necessarily result in an
actual reduction of the number of rules.

Let G = (V,T, S, P) be a context-free grammar. Suppose that P contains
a production of the form

A— I BCEQ.
Assume that A and B are different variables and that

B =y lyz| - |yn

6.1 METHODS FOR TRANSFORMING GRAMMARS 151

is the set of all productions in P which have B as the left side. Let ¢ =
(V, T,8S,]3) be the grammar in which P is constructed by deleting

A — z1Bxs (6.1)
from P, and adding to it
A= zyz2 |z 12| - |21 Y.
Then
L (@) = L(G)

Proof: Suppose that w € L{G), so that

S;:‘}-G w.

The subscript on the derivation sign = is used here to distinguish between
derivations with different grammars. If this derivation does not involve the
production (6.1), then obviously

*
S=>§w.

If it does, then look at the derivation the first time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that
this is done immediately (see Exercise 17 at the end of this section). Thus

.2
S = ulAug = urr1 Brsus =G UL Y4 ToUs.
But with grammar G we can get
*
S :>6, ulAug =>§ U1 T1Y LUz,

Thus we can reach the same sentential form with G and G. If (6.1) is used
again later, we can repeat the argument. It follows then, by induction on
the number of times the production is applied, that

S =*>‘§ w,
Therefore, if w € L (G), then w € L (@)

By similar reasoning, we can show that if w € I, (@), then w € L (@),
completing the proof. =
I—

Theorem 6.1 is a simple and quite intuitive substitution rule: A produc-
tion A — x1 Bz can be eliminated from a grammar if we put in its place

162

Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NorRMAL FORMS

the set of productions in which B is replaced by all strings it derives in one
step. In this result, it is necessary that A and B be different variables. The
case when A = B is partially addressed in Exercises 22 and 23 at the end
of this section.

Consider G = ({A, B}, {a,b,c}, A, P) with productions

A — alaaA| abBe,
B — abbAlb.

Using the suggested substitution for the variable B, we get the grammar G
with productions

A — alaaA| ababbAc|abbe,

B — abbAlb.

The new grammar G is equivalent to G. The string aaabbc has the derivation
A = aaA = aqaabBc = aaabbe
in G, and the corresponding derivation

A = aaA = aaabbe

in G.

Notice that, in this case, the variable B and its associated productions
are gtill in the grammar even though they can no longer play a part in any
derivation. We will see shortly how such unnecessary productions can be

removed from a gramzrnar.

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set 18

5 — aSbiA| A,
A — ad,

the production § — A clearly plays no role, as A cannot be transformed
into a terminal string. While A can occur in a string derived from S, this
can never lead to a sentence. Removing this production leaves the language
unaffected and is a simplification by any definition.

6.1 MeTHODS FOR TRANSFORMING (GRAMMARS 153

Definition 6.1

Let G = (V,T, 5, P) be a context-free grammar. A variable 4 € V is said
to be useful if and only if there is at least one w € L (G) such that

§ S Ay S w, (6.2)
with z,y in (V UT)". In words, a variable is useful if and only if it occurs

in at least one derivation. A variable that is not useful is called useless. A
production is useless if it involves any useless variable.

A variable may be useless because there is no way of getting a terminal
string from it. The case just mentioned is of this kind. Another reason a
variable may be useless is shown in the next grammar. In a grammar with
start symbol S and productions

5— A,
A — aA|),
B — bA,

the variable B is useless and so is the production B — bA. Although B can
derive a terminal string, there is no way we can achieve S = zBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot
derive a terminal string. A procedure for removing useless variables and
productions is based on recognizing these two situations. Before we present
the general case and the corresponding theorem, let us look at another
example,

Eliminate useless symbols and productions from G = (V,T, S, P), where
V ={84,B,C} and T = {a, b}, with P consisting of

S —aS|A|C,
A —a,

B — aa,

C' — aChb.

Figure 6.1

Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FoRrMs

First, we identify the set of variables that can lead to a terminal string.
Because A — a and B — aa, the variables A and B belong to this set.
So does S, because § = A = a. However, this argument cannot be made
for C, thus identifying it as useless. Removing C and its corresponding
productions, we are led to the grammar G, with variables Vi = {8, A, B},
terminals T' = {a}, and productions

S — aS|A,
A — a,
B — aa.

Next we want to eliminate the variables that cannot be reached from
the start variable. For this, we can draw a dependency graph for the vari-
ables. Dependency graphs are a way of visualizing complex relationships
and are found in many applications. For context-free grammars, a depen-
dency graph has its vertices labeled with variables, with an edge between
vertices C and D if and only if there is a production form

C — zDy.

A dependency graph for V; is shown in Figure 6.1. A variable is useful
only if there is a path from the vertex labeled S to the vertex labeled with
that variable. In our case, Figure 6.1 shows that B is useless. Removing it
and the affected productions and terminals, we are led to the final answer

G = (f’,f, S, ﬁ) with ¥V = {$, A} T = {a}, and productions

S — aS|A,
A — .

The formalization of this process leads to a general construction and
the corresponding theorem.

Let G = (V,T,5,P) be a context-free grammar. Then there exists an

equivalent grammar G = (V,’f, 5, ﬁ) that does not contain any useless
variables or productions.

Figure 6.2

6.1 METIODS FOR TRANSFORMING GRAMMARS 155

Proof: The grammar G can be gencrated from G by an algorithm consisting
of two parts. In the first part we construct an intermediate grammar G; =
(W1, T3, S, Py) such that V; contains only variables A for which

A uweT
is possible. The steps in the algorithm are:
1. Set Vi to &

2. Repeat the following step until no more variables are added to Vi.

For every A € V for which I’ has a production of the form

A— 1292y, with all ; in VUT,

add A to V7.
3. Take I as aJl the productions in £ whose symbols are all in (VyuT).

C‘lmxly this procedure terminates. It is equally clear that if A € Vi,
then A S w e T is a possible derlvatmn with ;. The remajning issue
is whether every A for which 4 = w = ab--- is added to V; before the
procedure fterminates. To see this, (,unsider any such A4 and look at the
partial derivation trec corresponding to that derivation (Figure 6.2). At
level £, there are only terminals, so every variable A; at level k — 1 will be
added to V; on the first pass through Step 2 of the algorithm. Any variable
at level £ — 2 will then be added to V) on the second pass through Step 2.
The third time through Step 2, all variables at level & — 3 will be added,
and so on. The algorithm cannot terminate while there are variables in the
tree that are not yet in V). Hence A4 will eventually be added to V.

In the second part of the construction, we get the final answer & from
Gy. We draw the variable dependency graph for G and from it find all

9

ir_ -Tevel £ -2
-1_.
(.4) ¢ - Leveld-1
a J | & F-o--a-c Level £

156

o s e R T

Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

variables that cannot be rcached from §. These arc removed from the
variable set, as are the productions involving them. We can also eliminate
any terminal that does not occur in some useful production. The result is

the grammar ¢ = (V, T, S, P).
Becausce of the construction, G does not contain any useless symbols or
productions. Also, for each w € L (G) we have a derivation

S 2 Ay = w.

Since the construction of G retains A and all associated productions, we
have everything needed to make the derivation

5 % *
S =g 1Ay =5 w.

The grammar G is constructed from G by the removal of productions,

-

so that P C P. Consequently L (G) C L(G). Putting the two results

together, we see that G and G arc equivalent. m
———

Removing A-Productions

One kind of production that is sometimes undesirable is one in which the
right side is the empty string.

Any production of a context-free grammar of the form
A— A

is called a A-production. Any variable A [or which the derivation

A A (6.3)

is possible is called nullable.

A grammar may gencrate a language not containing A, yet have some
A-productions or nallable variables. In such cases, the A-productions caw
be removed.

6.1 METHODS FOR TRANSFORMING GRAMMARS 157

Consider the grammar

S — aSih,
S] - aSlb}A

This grammar generates the A-free language {a"b™ : n > 1}. The A-production
51 — A can be removed after adding new productions obtained by substi-
tuting A for Sy where it occurs on the right. Doing this we get the grammar

§ — aSib|ab,
Sy — aS;blab.

We can easily show that this new grammar gencrates the same language as
the original one.

In more general situations, substitutions for A-productions can be made
in a similar, although more complicated, manner.

L CCTE R Let G be any context-free grammar with A not in L (). Then there exists

an equivalent grammar G having no A-productions.

Proof: We first find the set Vi of all nullable variables of G, using the
following steps.

1. For all productions A — A, put A into Vy.

2. Repeat the following step until no further variables are added to Vy.

For all productions

B — AjAy--- Ay,

where Aj, As, ..., A, arc in Vi, put B into V.

Once the sct Vi has been found, we are ready to construct P. To do so,
we look at all productions in P of the form

A= ZTy T, 2 > 1,

where each z; € V UT. For cach such production of P, we put into P that
production as well as all those generated by replacing nullable variables with
A in all possible combinations. For example, if z; and x; are both nullable,
there will be one production in P with z; replaced with A, one in which
is replaced with A, and one in which both 2; and z; are replaced with .

158

Example 6.5

Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

There is one exception: if all ; are nullable, the production A — A is not
put into P. R

The argument that this grammar G is equivalent to G is straightforward
and will be left to the reader. =

Find a context-free grammar without A-productions equivalent to the gram-
mar defined by

S — ABaC,
A — BC,

B — b|A,

C — DI,
D - d.

From the first step of the construction in Theorem 6.3, we find that the
nullable variables are A, B, . Then, following the second step of the con-
struction, we get

S — ABaC |Ba(C| AaC |ABa| aC |Ac| Bala,
A — B|C|BC,

B — b,

C — D,

D —d.

Removing Unit-Productions

As we see from Theorem 6.2, productions in which both sides are a single
variable are at times undesirable.

Any production of a context-free grammar of the form
A— B,

where A, B € V is called a unit-production.

6.1 METHODS FOR TRANSFORMING (GRAMMARS 159

To remove unit-productions, we use the substitution rule discussed in
Theorem 6.1. As the construction in the next theorem shows, this can be
done if we proceed with some care,

Let G = (V,T, 8, P) be any context-free grammar without A-productions.

Then there exists a context-free grammar G = (17, ’f, S, 13) that does not
have any unit-productions and that is equivalent to G,

Proof: Obviously, any unit-production of the form A — A can be removed
from the grammar without effect, and we need only consider A — B, where
A and B are different variables. At first sight, it may seem that we can use
Theorem 6.1 directly with 1 = x2 = A to replace

A—- B
with

A= yilyal - [y
But this will not always work; in the special case

A— B,
B— A,

the unit-productions are not removed. To get around this, we first find, for
each A, all variables B such that

A5 B, (6.4)

We can do this by drawing a dependency graph with an edge (C, D) when-
ever the grammar has a unit-production C — D); then (6.4) holds whenever
there is a walk between A and B. The new grammar G is generated by
first putting into P all non-unit productions of P. Next, for all A and B
satisfying (6.4), we add to P

A=y lyzl - yn,

where B — y1 |y2|- - - yn is the set of all rules in P with B on the left. Note
that since B — yy |ya| - - |yn is taken from P, none of the y; can be a single
variable, so that no unit-productions are created by the last step.

To show that the resulting grammar is equivalent to the original one we
can follow the same line of reasoning as in Theorem 6.1, m

160 Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

Figze 6.3 - | @ @C }j
—

—
\
\
|

Remove all unit-productions from

S — Aa|B,
B — Albb,
A — albc| B.

The dependency graph for the unit-productions is given in Figure 6.3; we

see from it that § = 4,5 = B, B = A, and A = B. Hence, we add to the
original non-unit productions
S — Aa,
A — albe,
B — bb,
the new rules
S — a |bc| bb,
A — bb,
B — albe,
to obtain the equivalent grammar

S — a|bc| bb|Aa,
A — a|bb| be,
B — a|bb| be.

Note that the removal of the unit-productions has made B and the associ-
ated productions useless.

— —

We can put all these results together to show that grammars for context-
free languages can be made free of useless productions, A-productions, and
unit-productions,

bigﬂg:jgﬁz:% Let L be a context-free language that does not contain A. Then there exists
a context-free grammar that generates L and that does not have any useless
productions, A-productions, or unit-productions.

6.1 METHODS FOR TRANSFORMING GRAMMARS i61

Proof: The procedures given in Theorems 6.2, 6.3, and 6.4 remove these
kinds of productions in turn. The only point that needs consideration is
that the removal of one type of production may introduce productions of
another type; for example, the procedure for removing A-productions can
create new unit-productions. Also, Theorem 6.4 requires that the gram-
mar have no A-productions. But note that the removal of unit-productions
does not create A-productions (Exercise 15 at the end of this section), and
the removal of useless productions does not create A-productions or unit-
productions (Exercise 16 at the end of this section). Therefore, we can
remove all undesirable productions using the following sequence of steps:

1. Remove A-productions
2. Remove unit-productions

3. Remove useless productions

The result will then have none of these productions, and the theorem is
proved. m

EXERCISES

1. Complete the proof of Theorem 6.1 by showing that
S =*>5 w
implies
S =5 w.

2, In Example 6.1, show a derivation tree for the string ebabbbac, using both
the original and the modified grammar.

3. Show that the two grammars

S — abAB|ba,
A —+ gaa,
B — aAlbb
and _
S — abAaA |abAbb| ba,

A — aaa

are equivalent. &

162 Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

o

10.
11.
12,

In Theorem 6.1, why is it necessary to assume that A and B are different
variables?

Eliminate all useless productions from the grammar

8§ — aS|AB,
A — bA,
B — AA.

What langnage does this grammar generate?

. Eliminate useless productions from

S8 — alaA| B|C,
A — aBJA,

B — Aa,

C —ecCD,

D — ddd.

Eliminate all A-productions from

S — AaBlaaB,
A— A,
B — bbA|A.

. Remove all unit-productions, all useless productions, and all A-productions

from the grammar

S — aAlaBB,
A — aaAlA,
B — bB|bbC,
C — B,

What language does this grammar generate? #

. Eliminate all unit productions from the grammar in Exercise 7.

Complete the proof of Thecrem 6.3.
Complete the proof of Theorem 6.4.

Use the construction in Theorem 6.3 to remove A-productions from the gram-
mar in Example 5.4. What language does the regulting grammar generate?

13

14

15

16

14

18,

6.1 METHODS FOR TRANSFORMING GRAMMARS 163

Suppose that 7 is a context-free grammar for which A € L (G). Show that if
we apply the construction in Theorem 6.3, we obtain a new grammar & such
that L (@) = L(G) - {A}.

Give an example of a situation in which the removal of A-productions intro-

duces previously nonexistent unit-productions. ##

Let G be a grammar without A-productions, but pbssibly with some unit-
productions. Show that the construction of Theorem 6.4 does not then intro-
duce any A-productions.

Show that if & grammar has no A-productions and no unit-productions, then
the removal of useless productions by the construction of Theorem 6.2 does
not introduce any such productions. #

Justify the claim made in the proof of Theorem 6.1 that the variable B can
be replaced as soon as it appears.

Suppose that a context-free grammar G = (V, T, S, P) has a production of
the form

A — zy,

¢

where z,7 € (V UT)*t. Prove that if this rule is replaced by

A — By,

B — z,

where B ¢ V, then the resulting grammar is equivalent to the original one.

19,. Cpnsider the procedure suggested in Theorem 6.2 for the removal of useless

20.

“productions. Reverse the order of the two parts, first eliminating variables
" that cannot be reached from S, then removing those that do not yield a

terminal string. Does the new procedure still work correctly? If so, prove it.
If not, give a counterexample.

It is possible to define the term simplification precisely by introducing the
concept of complexity of a grammar, This can be done in many ways; one
of them is through the length of all the strings giving the production rules.
For example, we might use

complexity (G) = Z {1+ v},

A—vEF

Show that the removal of useless productions always reduces the complexity
in this sense. What can you say about the removal of A-productions and
unit-productions?

164

Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

21.

* 22,

23.

* 24,

A context-free grammar G is said to be minimal for a given language L if
complexity (G) < complexity (@‘) for any & generating L. Show by exam-
ple that the removal of useless productions does not necessarily produce a
minimal grammar. @

Prove the following result, Let G = (V, T, 5, F) be a context-free grammar.
Divide the set of productions whose left sides are some given variable (say,
A), into two digjoint subsets

A — Azy |Axy| - |Azn,

and
A=y lyz| - Y,

where x,;,y; are in (VUT)", but A is not a prefix of any y;. Consider the
grammar GG = (V u{z},T,5, ﬁ), where Z ¢ V and P is obtained by re-
placing all productions that have A on the left by

A—-wywZ, 1=12..,m,
Z — w4, i=12,..,n
Then L(G) =1L (@)
Use the result of the preceding exercise to rewrite the grammar

A — AalaBc| A
B — Bb|bc

so that it no longer has productions of the form 4 — Az or B - Bz.

Prove the following counterpart of Exercise 22. Let the set of productions
involving the variable A on the left be divided into two disjoint subsets

A— o AlzeA|- |zl
and
A— n ‘Uzl . l'y'rn

where A is not a suffix of any y:. Show that the grammar obtained by
replacing these productions with

is equivalent to the original grammar.

Example 6.7

6.2 Two [MPORTANT NORMAL FORMS 165

Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been stud-
ied extensively. We consider two of them briefly.

Chomsky Normal Form

One kind of normal form we can look for is one in which the mumber of
symbols on the right of a production arc strictly limited. In particular, we
can ask that the string on the right of a production consist of no more than
two symbols. One instance of this is the Chomsky normal form.

A context-free grammar is in Chomsky normal form if all productions are
of the form

A — BC,
or
A-—-a,

where A, B, C arein V, and ¢ is in 7",

The grammar

S — AS|a,
A — SAlb

is in Chomsky normal form. The grammar

S — AS|AAS,
A — SAl|aa
is not; both productions § — AAS and A — aa violate the conditions of

Definition 6.4.
_ R

166 Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

Any context-free grammar G = (V, T, S, P) with A ¢ L (G) has an equiva-
lent grammar G= (i}, f, S, ﬁ) in Chomsky normal form.

Proof: Because of Theorem 6.3, we can assume without loss of generality
that G has no A-productions and no unit-productions. The construction of
(will be done in two steps.

Step 1: Construct a grammar G; = (V1,T, S, Py) from G by considering all
productions in P in the form

A-—rﬂilfl?z“-:l}n, (6.5)

where each z; is a symbol either in V or T. If n = 1 then z; must be a
terminal since we have no unit-productions. In this case, put the production
into P,. If n > 2, introduce new variables B, for each a € T. For each
production of P in the form (6.5) we put into P, the production

A— CiCy- - Cy,
where
Ci=ux;if z; isin V,
and
C;, =B, fz; =a.
For every B, we also put into P; the production
B, —a.

This part of the algorithm removes all terminals from productions whose
right side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar (1 all of whose
productions have the form

A a, (6.6)
Or
A= C1Co - Ch, (6.7)

where C; € V1.
It is an easy consequence of Theorem 6.1 that

L(Gy)=L(G).

6.2 Two IMPORTANT NORMAL FORMS 167

Step 2: In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put
all productions of the form (6.6) as well as all the productions of the form
(6.7) with n = 2 into P. For n > 2, we introduce new variables Dy, D5, ...
and put into P the productions

A— C\Dy,
Dy - C9D;,,
Dp_3— C',;,..1Cn.

Obviously, the resulting grammar G is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L (G1) = L (@), so that

L(@):L(G).

This somewhat informal argument can easily be made more precise. We
will leave this to the reader. w

Convert the grammar with productions

S — ABa,
A — aab,
B — Ac,

to Chomsky normal form.

As required by the construction of Theorem 6.6, the grammar does not
have any A-productions or any unit-productions.

In Step 1, we introduce new variables B,, By, B, and use the algorithm
to get

S — ABB,,
A — B.B,By,
B — AB,,

B, — a,

By —+ b,

B, —>ec

168 Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

In the second step, we introduce additional variables to get the first two
productions into normal form and we get the final result

S — ADq,
D, — BB,,
A— B,Ds,
Dy — B, By,
B —- AB,,
B, — a,

Bz, - b,

B. — c.

Greibach Normal Form

Another useful grammatical form is the Greibach normal form. Here
we put restrictions not on the length of the right sides of a production,
but on the positions in which terminals and variables can appear. Argu-
ments justifying Greibach normal form are a little complicated and not very
transparent. Similarly, constructing a grammar in Greibach normal form
equivalent to a given context-free grammar is tedious. We therefore deal
with this matter very briefly. Nevertheless, Greibach normal form has many
theorctical and practical consequences.

A context-free grammar is said to be in Greibach normal form if all pro-
ductions have the form

A — az,

where a € T and £ € V*.

If we compare this with Definition 5.4, we see that the form A — azx
is common to both Greibach normal form and s-grammars, but Greibach
normal form does not carry the restriction that the pair (A, a) occur at most
once. This additional freedom gives Greibach normal form a generality not
possessed by s-grammars.

Example 6.9

6.2 Two IMPORTANT NORMAL FORMS 169

If a grammar is not in Greibach normal form, we may be able to rewrite
it in this form with some of the techniques encountered above. Here are two
simple examples.

[he grammar

S — AB,
A — aA|bB|b,
B—b

is not in Greibach normal form. However, using the substitution given by
Theorem 6.1, we immediately get the equivalent grammar

S — aAB|bBB|bB,
A — aA|bB|b,
B — b,

which is in Greibach normal form.

— — S——

Convert the grammar
S — abSb|aa,

into Greibach normal form.

Here we can use a device similar to the one introduced in the con-
struction of Chomsky normal form. We introduce new variables A and B
that are essentially synonyms for e and b, respectively. Substituting for the
terminals with their associated variables leads to the equivalent grammar

S — aBSB|aA,
A= a,
B = b,

which is in Greibach normal form.

—— e N

In general, though, neither the conversion of a given grammar to Greibach
normal form nor the proof that this can always be done are simple matters.
We introduce Greibach normal form here because it will simplify the tech-
nical discussion of an important result in the next chapter. However, from

170 Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

a conceptual viewpoint, Greibach normal form plays no further role in our
discussion, 50 we only quote the following general result without proof.

For every context-free grammar G with A ¢ L (G), there exists an equivalent
gramimnay G in Greibach normal form.
T a——

EXERCISES

1. Provide the details of the proof of Theorem 6.6.
2. Convert the grammar S — aSb|ab into Chomsky normal form.

. Transform the grammar S — aSaA|A,A — abAlb into Chomsky normal
form.

4. Transform the grammar with productions

5 — abAB,
A s bAB|A,
B — BAa|A| A,

into Chomsky normal form.

5. Convert the grammar

S — AB|aB
A — aab|A
B — bbA

into Chomsky normal form. &

6. Let G = (V,T, S, P) be any context-free grammar without any A-productions
or unit-productions. Let & be the maximum number of symbols on the right of
any production in P. Show that there is an equivalent grammar in Chomsky
normal form with no more than (k — 1) |P| + |T'| production rules.

7. Draw the dependency graph for the grammar in Exercise 4.

8. A linear language is one for which there exists a linear grammar (for a. def-
inition, see Example 3.13). Let L be any linear language not containing A.
Show that there exists a grammar G = (V, T, 8, P) all of whose productions
have one of the forms

A —aB,
A — Ba,

A—a,

where a € T, A, B € V, such that L = L (G).

9.

10.

11.

12.

13.

14.

15.

* 16,

6.2 Two IMPORTANT NORMAL ForRMS 171

Show that for every context-free grammar G = (V, T, 5, P) there is an equiv-
alent one in which all productions have the form

A — aBC,

or
A= A
wherea € TU{A} A, B,CecV. @

Convert the grammar

S — aSblbSala|b

into Greibach normal form.

Convert the following grammar into Greibach normal form.

S — aShlab.

Convert the grammar

5 — ablaS|aa8

into Greibach normal form. &

Convert the grammar

S — ABb|a,
A — waA|B,
B — bAb

into Greibach normal form.

Can every lincar grammar be converted to a form in which all productions
look like A — ax, where a € T and x € VU {A}?

A context-free grammar is said to be in two-standard form if all production
rules satisfy the following pattern

A — uBC,
A—aB,
A - aq,

where A, B,C €V andaeT.
Convert the grammar G = ({9, A, B,C}, {a, b}, S,) with P given as
§ — aSA,
A — bABC,
B — b,
C — aBC,

into two-standard form. #

T'wo-standard form is general; for any context-{rce grammar G with A ¢
L (G), there exists an eguivalent grammar in two-standard form. Prove this.

=3

| L]

Chapter 6 SIMPLIFICATION OF CONTEXT-FREK GRAMMARS AND NORMAIL FORMS

43 A Membership Algorithm for Context-
Free Grammars®

In Section 5.2, we claimed, without any elaboration, that membership and
parsing algorithms for context-free grammars exist that require approxi-
mately |w]” steps to parse a string w. We are now in a position to justify
this claim. The algorithm we will describe here is called the CYK algorithm,
after its originators J. Cocke, D. H. Younger, and T. Kasami. The algo-
rithm works only if the grammar is in Chomsky normal form and succeeds
by breaking one problem into a sequence of smaller ones in the following
way. Assume that we have a grammar G = (V, T, S, P} in Chomsky normal
form and a string

H = Ollaz e aﬂn.
We define substrings

w’i‘j _— (]Ji, - oa a-’i’
and subsets of V

T/,;J = {AEV:AQ”IU”}.
Clearly, w € L (G) if and only if § € Vy,,.
To compute V;;, observe that A € V;; if and only if & contains a pro-

duction A — a;. Therefore, V;; can be computed for all 1 € ¢ < n by
inspection of w and the productions of the grammar. To continue, notice

that for j > 7, A derives w;; if and only if there is a production A — BC,
with B = w;y, and C = w4 1; for some k with 7 < &,k < j. In other words,

Vij = U {A:A— BC, with B € Vi, C € Vig1,;1. (6.8)
kefiitl,..,j—1}

An inspection of the indices in (6.8) shows that it can be used to compute
all the V;; if we proceed in the sequence

].t C()mpute ‘/:] '|_ s -‘r/QQ, ey Vnn
20 j()nlpute ‘/f:[) ‘/’23, reay Vnml’n
3. Compute Vi3, Voy, ..., Voo p

and so on.

6.3 A MEMBERSHIP ALGORITHM FOR CONTEXT-FREE (JRAMMARS 173

Determine whether the string w = aabbb is in the language generated by
the grammar

A.S‘ — AB,
A — BB]a,
B3~ ABJb,

First note that w); = @, so Vi) is the set of all variables that immedi-
ately derive a, that is, Vi; = {A}. Since wa = a, we also have Vi = {A)
and, similarly,

Vin = {A}, Vay = {A}, Vs = {B}, Vi = {B} . V55 = {B}.
Now we use (6.8) to get
Vie = {A A B, BeV,Ce Vgg}.
Since Vi, = {A} and Vi = {A}, the set consists of all variables that occur
on the left side of a production whose right side is AA. Since there are
none, Vis is empty. Next,

Vay ={A:A— BC,B € Vi, C € Vag},

so the required right side is AB, and we have Vay = {5, B}. A straightfor-
ward argument along these lines then gives

Vis =@, Vo = {9, B}, Vay = {A}, Vs = {A},
Vig = {5 B}, Vo = {A},Vss ={9,B},

Vig = {A},Vas = {5, B},

Vis = {95, B},

so that w e L(G). -

The CYK algorithm, as described here, determines membership for any
language generated by a grammar in Chomsky normal form. With some
additions lo keep track of how the elements of Vi; are derived, it can be
converted into a parsing method. Lo see that the CYK membership algo-
rithm requires On® sleps, notice that exactly n(n 4 1) /2 sets of Vj; have
to be computed. Each involves the evaluation of at most n terms in (6.8),
50 the claimed resull (ollows.

-

174 Chapter 6 SimpLIFICATION Or CONTEXT-FREE GRAMMARS AND NORMAL FORMS

EXERCISES

1. Use the CYK algorithm to determine whether the strings aabb, aabba, and
abbbb are in the language generated by the grammar in Example 6.11.

2. Usc the CYK algorithm to find a parsing of the string aab, using the gramtnar
of Example 6.11.

3. Usc the approach cmployed in Excrcise 2 to show how the CYK membership
algorithm can be made into a parsing method.

** 4, Use the result in Exercise 3 to write a computer program for parsing with
any context-free grammar in Chomsky normal form.,

