Context-Free
Languages

n the last chapter, we discovered that not all languages arc regular.

While regular languages are effective in describing certain simple

patterns, one does not need to look very far for examples of nonreg-

ular languages. The relevance of these limitations to programming
languages becomes evident if we reinterpret some of the examples. If in
L = {a™b™ : n > 0} we substitute a left parenthesis for @ and a right paren-
thesis for b, then parentheses strings such as (()) and ((())) are in L, but
(() is not. The language therefore describes a simple kind of nested struc-
ture found in programming languages, indicating that some properties of
programming languages require something beyond regular languages. In
order to cover this and other more complicated features we must enlarge
the family of languages. This leads us to consider context-free languages
and grammars.

‘We begin this chapter by defining context-free grammars and languages,
illustrating the definitions with some simple examples. Next, we consider
the important membership problem; in particular we -ask how we can tell
if a given string is derivable from a given grammar. Fxplaining a sentence
through its grammatical derivation is familiar to most of us from a study
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of natural languages and is called parsing. Parsing is a way of describing
sentence structure. It is important whenever we need to understand the
meaning of a sentence, as we do for instance in translating from one language
to another. In computer science, this is rclevant in interpreters, compilers,
and other translating programs.

The topic of context-free languages is perhaps the most important as-
pect of formal language theory as it applies to programming languages.
Actual programming languages have many features that can be described
elegantly by means of context-free languages. What formal language the-
ory tells us about context-free langnages has important applications in the
design of programming languages as well as in the construction of cfficient
compilers. We touch upon this briefly in Section 5.3.

Context-Free Grammars

The productions in a regnlar grammar are restricted in two ways: the left
side must be a single variable, while the right side has a special form. To
create grammars that arc more powerful, we must relax some of these restric-
tions. By retaining the restriction on the left side, but permitting anything
on the right, we get context-free grammars. ‘

i

A grammar G = (V,T, 5, P) is said to be context-free if all productions
in P have the form

A—ux,

where Ae Vand z € (VUT)".
A language L is said to be context-free if and only if there is a context-
free grammar @ such that L = L (G).

Every regular grammar is context-free, so a regular language is also a
context-free one. But, as we know from simple examples such as {a™b"},
there are nonregular languages. We have already shown in Example 1.11
that this language can be generatced by a context-free grammar, so we sce
that the family of regular languages is a proper subset of the family of
context-free languages.

Context-free grammars derive their name from the fact that the sub-
stitution of the variable on the left of a production can be made any time
such a variable appears in a sentential form. It does not depend on the
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symbols in the rest of the sentential form (the context). This feature is
the consequence of allowing only a single variable on the left side of the
production.

Examples of Context-Free Languages

The grammar G = ({S},{a, b}, S, ), with productions

S — ala,
S — bS5,
S — A,

is context-free. A typical derivation in this grammar is
S = aSa = aaSaa = aabSbaa = aabbaa.
This makes it clear that
L(G)= {ww“‘ cw € {a, b}*} .

The language is context-free, but as shown in Example 4.8, it is not regular.

The grammar G, with productions

S — abl3,
A — aaBb,
B — bbAa,
A— A

is context-free. We leave it to the reader to show that
L (@) = {ab (bbaa)" bba (ba)" : n > 0}.

n

RBoth of the above examples involve grammars that are not only context-
free, but lincar. Regular and linear grammars are clearly context-free, but
a context-free grammar is not necessarily linear.
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The language
L={a"b™:n#m}

is context-free.

To show this, we need to produce a context-free grammar for the lan-
guage. The case of n = m was solved in Example 1.11 and we can build
on that solution. Take the case n > m. We first generate a string with an
equal number of a’s and b’s, then add extra a’s on the left. This is done
with

S — AS,,
Sl — CIS] bl)\,
A — dAla.

We can use similar reasoning for the case n < m, and we get the answer

S — A58, B,
51— aS1b|A,
A — adla,

B - bBlb.

The resulting grammar is context-free, hence L is a context-free language.
However, the grammar is not linear.

The particular form of the grammar given here was chosen for the pur-
pose of illustration; there are many other equivalent context-free grammars.
In fact, there are some simple linear ones for this language. In Exercise 25
at the end of this section you are asked to find one of them. -

Consider the grammar with productions
S — aSb|lSS|A.

This is another grammar that is context-free, but not linear. Some strings
in L (G) are abaabb, aababb, and ababab. It is not difficult to conjecture and
prove that

L={we{a,b}" :n, (w) =ny(w) and n, (v) 2 ny (v),
where v is any prefix of w}. (5.1)

We can see the connection with programming languages clearly if we re-
place o and b with left and right parentheses, respectively. The language L
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includes such strings as ((}) and () () () and is in fact the set of all properly
nested parenthesis structures for the common programming languages.
Here again there arc many other equivalent grammars. But, in contrast
to Example 5.3, it is not so easy to see if there are any linear ones. We will
have to wait until Chapter 8 before we can answer this question. -

Leftmost and Rightmost Derivations

In context-free grammars that are not linear, a derivation may involve sen-
tential forms with more than one variable. In such cases, we have a choice
in the order in which variables are replaced. Take for example the grammar
G = ({A, B, S},{a,b}, S, P) with productions

1. 5 = AB.

2. A — aaA.

3.A—- A\

4. B — Bb.

5 B — A

It is easy to sce that this grammar generates the language L (G) = {a®"b™ :
n > 0,m > 0}.
Consider now the two derivations

S AB 2 waAB = aaB =‘:L> aaBb :5> aab

and
. 1 1 2 5 3
S AB 2 ABb= aaABb = qaAb = aab.

In order to show which production is applied, we have numbered the pro-
ductions and written the appropriate number on the = symbol. From this
we see that the two derivations not only yield the same sentence but use
exactly the same productions. The difference is entirely in the order in
which the productions are applied. To remove such irrelevant factors, we
often require that the variables be replaced in a specific order.

RN

A derivation is said to be leftmost if in each step the leftmost variable
in the sentential form is replaced. If in each step the rightmost variable is
replaced, we call the derivation rightmost.
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Figure 5.1 { A

Consider the grammar with productions
S5 —aAB,
A — Db,
B — A\
Then
S = aAB = abBbB = abAbB = abbBbbB = abbbbl3 = abbbb

is a leftmost derivation of the string abbbb. A rightmost derivation of the
same string is

S = aAB = aAd = abBb = abAb = abbBbb = abbbb.
) e hn

Derivation Trees

A second way of showing derivations, independent of the order in which
productions are used, is by a derivation tree. A derivation tree is an
ordered tree in which nodes are labeled with the lcft sides of productions
and in which the children of a node represent its corresponding right sides.
For example, Figure 5.1 shows part of a derivation tree representing the
production

A — abABec.

In a derivation tree, a node labeled with a variable occurring on the left
side of a production has children consisting of the symbols on the right side
of that production. Beginning with the root, labeled with the start symbol
and ending in leaves that are terminals, a derivation tree shows how each
variable is replaced in the derivation. The following definition makes this
notion precise.

Definition

AR W,

Let G = (V,T,S,P) be a context-free grammar. An ordered tree is a
derivation tree for G if and only if it has the following properties.
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1. The root is labeled S.
2. Every leaf has a label from T U {A}.
3. Every interior vertex (a vertex which is not a leaf) has a label from V.

4. If a vertex has label A € V, and its children are labeled (from left to
right) a1, @2, -.., @n, then P must contain a production of the form

A —ajag - ay,.

5. A leaf labeled X has no siblings, that is, a vertex with a child labeled A
can have no other children.

A tree that has properties 3, 4 and 5, but in which 1 does not necessarily
hold and in which property 2 is replaced by:

2a. Every leaf has a label from V U T U {\}

is said to be a partial derivation tree.

The string of symbols obtained by reading the leaves of the tree from
left to right, omitting any A’s encountered, is said to be the yield of the tree.
The descriptive term left to right can be given a precise meaning. The yield
is the string of terminals in the order they are encountered when the tree
is traversed in a depth-first manner, always taking the leftmost unexplored
branch.

Consider the grammar G, with productions

S — aAB,
A — bBb,
B — Al

The tree in Figure 5.2 is a partial derivation tree for &, while the tree in
Figure 5.3 is a derivation tree. The string abBbB, which is the yield of the
first tree, is a sentential form of G. The yield of the second tree, abbbb is a
sentence of L (G).

u
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Relation Between Sentential Forms and Derivation Trees

Derivation trees give a very explicit and easily comprehended description
of a derivation. Like transition graphs for finite automata, this explicitness
is a great help in making arguments. First, though, we must establish the
connection between derivations and derivation trees.

Let G = (V,T,5, P) be a context-free grammar. Then for every w € L (G),

there exists a derivation tree of G whose yield is w. Conversely, the yield of
any derivation tree is in L (G). Also, if t¢ is any partial derivation tree for
GG whose toot is labeled §, then the yield of ¢ is a sentential form of G.

Proof: First we show that for every sentential form of L (@) there is a cor-
responding partial derivation tree. We do this by induction on the number
of steps in the derivation. As a basis, we note that the claimed result is true
for every sentential form derivable in one step. Since S = u implies that
there is a production § — u, this follows immediately from Definition 5.3.

Assume that for every sentential form derivable in n steps, there is a
corresponding partial derivation tree. Now any w derivable in n 4 1 steps
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must be such that

§2zAy, z,ye(VUT)', AeV,
in n steps, and

rAy = rai1az - Gy = w,a; € VUT.

Since by the inductive assumption there is a partial derivation tree with
yield 2Ay, and since the grammar must have production A — a162- -+ m,
we see that by expanding the leaf labeled A, we get a partial derivation tree
with yield zaias -+ amy = w. By induction, we therefore claim that the
result is true for all sentential forms.

In a similar vein, we can show that cvery partial derivation trce repre-
sents some sentential form. We will leave this as an exercise.

Since a derivation tree is also a partial derivation tree whose leaves are
terminals, it follows that cvery sentence in L (G) is the yield of some deriva-
tion tree of (¢ and that the yield of every derivation tree is in L (G). =

Derivation trecs show which productions are used in obtaining a sen-
tence, but do not give the order of their application. Derivation trees are
able to represent any derivation, reflecting the fact that this order is ir-
relevant, an observation which allows us to close a gap in the preceding
discussion. By definition, any w € L{G) has a derivation, but we have
not claimed that it also had a leftmost or rightmost derivation. However,
once we have a derivation tree, we can always get a leftmost derivation by
thinking of the trce as having been built in such a way that the leftmost
variable in the tree was always expanded first. Filling in a fow details, we
are led to the not surprising result that any w € L (G) has a lefemost and a
rightmost derivation (for details, sce Exercise 24 at the end of this section).

EXERCISES

1. Complete the arguments in Example 5.2, showing that the language given is
generated by the grammar.

Draw the derivation tree corresponding to the derivation in Example 5.1,

Giive a derivation tree for w = abbbaabbaba for the grammar in Example 5.2.
Use the derivation tree to find a leftmost derivation.

1. Show that the grammar in Example 5.4 does in fact generate the language
described in Equation 5.1.

Is the language in Example 5.2 regular?

Complete the proof in Theorem 5.1 by showing that the yield of cvery partial
derivation tree with root S is a sentential form of G.
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é @ Find context-free grammars for the following languages (with n > 0, m > 0).

*11.

12

13.

. 14.

*15.

(a) L={a"t"™ :n<m+3} B

(b) L={a"b":n#m -1}

(¢) L=A{a"b™ :n # 2m}

(d) L={a"™:2n<m < 3n} @

(6) L= {w € {a, B ma (1) # o ()}

(f) L = {w € {a, b}*.: N (v) > ny (v), where v is any prefix of w}
(g) L={w € {a,b}" : na (w) = 2ny (w) + 1}.

8. Find context-free grammars for the following languages (with n > 0, m >

0,k > 0).

(a) L={a""c* :n=morm<k} @

(b) L = {a™0™c" : n =m or m # k}

(c) L={a™™c*:k=n+m}

(d) L= {a™b™c" : n+2m =k}

(e) L={a"™c*: k=|n— m|} &

(6) L= {w € {a,b,c}" : na (w) + 4 () # e ()}
(8) L={a"b"c* k#n+m)

(h) L = {a"b"c* : k > 3}.

Find a context-free grammar for head (L), where L is the language in Exercise
7(a) above. For the definition of head see Exercise 18, Section 4.1.

Find a context-free grammar for 3 = {a, b} for the language L = {a"ww ™" : w €
¥',n>1}

Given a context-free grammar G for a language L, show how one can create
from G a grammar G so that L (@) = head (L).

Let L = {a™b™ : n 2> 0}.
(a) Show that L? is context-free. @

(b) Show that L* is context-frec for any given k > 1.

(¢) Show that L and L* are context-free,

Let L1 be the language in Exercise 8(a) and L2 the language in Exercise 8(d).
Show that L; U L is a context-free language.

Show that the following language is context-free.

L= {umuv” cu,v,w € {a,b), [uf = |w| = 2}

Show that the complement of the language in Example 5.1 is context-free. @&
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16. Show that the complement of the language in Exercisc 8(b) is context-free.

CL’_Z) Show that the language L = {wicws : w1, w2 € {a, b wy # u;é':}, with X =
{a,b,c}, is context-free.

18. Show a derivation tree for the string aabbbb with the grammar
S — AB|A,
A —aB,
B — Sb.

(live a verbal description of the language generated by this grammar.

‘onsider the grammar with productions

S — aanB,

A — bBb|A,

B — Aag.
Show that thc string aabbabba is not in the language generated by this
gramrrar. W

20. Congider the derivation tree below.

s
/ /'r \\\
¥ b} \\*
a 5 = b
|
¥ L

jui]

Find & simple grammar G for which this is the derivation tree of the string

— aab. Then find two more sentences of L (G).
@Deﬁne what one might mean by properly nested parenthesis structures in-

volving two kinds of parentheses, say () and []. Intuitively, properly nested
strings in this situation are ([]), ([[]]) [0], but not ([)] or ((]]. Using your
definition, give a context-free grammar for generating all properly nested

~ parenthescs.
/ )

[ 22\ Find a context-free grammar for the set of all regular expressions on the
§
*Z alphabet {a,b}. £

23, Find a context-frec grammar that can generate all the production rules for
context-free grammars with 7 = {a, b} and V = {4, B,C}.

rove that if (7 i« a context-free grammar, then every w € L (G) has a leftmost
and rightmost derivation. Give an algorithm for finding such derivations from
a derivation tree.
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25. Find a linear grammar for the language in Example 5.3.

26. Let G = (V,T,5,P) be a context-free grammar such that every one of its
productions is of the form A — v, with |v| = k > 1. Show that the derivation
tree for any w € L () has a height h such that

logy |lw] < h < (l—?i:]—ﬂ

Parsing and Ambiguity

We have so far concentrated on the generative aspects of grammars. Given
a grammar G, we studied the sct of strings that can be derived using G. In
cases of practical applications, we are also concerned with the analytical side
of the grammar: given a string w of terminals, we want to know whether
or not w is in L(G). If so, we may want to find a derivation of w. An
algorithm that can tell us whether w is in L (() is a membership algorithm.
The term parsing describes finding a sequence of productions by which a
w € L(G) is derived.

Parsing and Membership

Given a string w in L (G), we can parse it in a rather obvious fashion:
we systematically construct all possible (say, leftmost) derivations and see
whether any of them match w. Specifically, we start at round one by looking
at all productions of the form

5 —x,

finding all = that can be derived from S in one step. If nonc of these
result in a match with w, we go to the next round, in which we apply
all applicable productions to. the leftmost variable of every z. This gives
us a set of sentential forms, some of them possibly leading to w. On each
subsequent round, we again take all leftmost variables and apply all possible
productions. It may be that some of these sentential forms can be rejected
on the grounds that w can never be derived from them, but in general, we
will have on each round a set of possible sentential forms. After the first
round, we have sentential forms that can be derived by applying a single
production, after the second round we have the sentential forms that can be
derived in two steps, and so on. If w € L (), then it must have a leftmost
derivation of finite length. Thus, the method will eventually give a leftmost
derivation of w.

For refercnce below, we will call this the exhaustive search parsing
method. It is a form of top-down parsing, which we can view as the
construction of a derivation trec from the root down.
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Consider the grammar

S — S5 |aSh| bSal

and the string w = aabb. Round one gives us

1. §= 585,
2. 8= abSbh,
3. = bSa,
4. 5= A

The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S = 85= 9555,
S = 858 = aShs,
S = 55=b5al,
S=85=275,

which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the addi-
tional sentential forms

S = aSb = aS50,
S = aSbh = aaSbb,
S = aSb = abSab,
S = aSb = ab.

Again, several of these can be removed from contention. On the next round,
we find the actual target string from the sequence '

S = aSb = aaSbb = aabb.

Therefore aabb is in the language generated by the grammar under consid-
eration. :
o

Exhaustive search parsing has serious flaws. The most obvious one
is its tediousness: it is not to be used where efficient parsing is required.
But even when efficiency is a secondary issue, there is a more pertinent
objection. While the method always parses a w € L (G), it is possible that
it never terminates for strings not in L (G). This is certainly the case in
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the previous example; with w = abb, the method will go on producing trial
sentential forms indefinitely unless we build into it some way of stopping.

The problem of nontermination of exhaustive scarch parsing is relatively
easy to overcome if we restrict the form that the grammar can have, If we
examine Example 5.7, we see that the difficulty comes from the productions
S - A; this production can be usced to decrease the length of successive
sentential forms, so that we cannot tell casily when to stop. If we do not
have any such productions, then we have many fewer difficulties. In fact,
there are two types of productions we want to rule out, those of the form
A — X as well as those of the formn A — B, As we will see in the next
chapter, this restriction does not affect the power of the resulting grammars
in any significant way.

The grammar
8~ §5|aSh| bSa |ab| ba

satisfies the given requirements. It generates the language in Example 5.7
without the empty string.

Given any w € {a,b}", the exhaustive search parsing method will al-
ways terminate in no more than |w| rounds. This is clear because the length
of the sentential form grows by at least one symbol in each round. After
|w| rounds we have either produced a parsing or we know that w ¢ L (G).

The idea in this example can be generalized and made into a theorem
for context-free languages in general,

Suppose that G = (V,T, 8, P) is a context-free grammar which does not
have any rules of the form

A— A,
or
A— D,

where A, B € V. Then the cxhaustive search parsing method can be made
into an algorithm which, for any w € ¥, cither produces a parsing of w, or
tells us that no parsing is possible.

Proof: For each sentential form, consider both its length and the humber
of terminal symbols. Each step in the derivation increases at leoast one
of these, Since neither the length of a sentential form nor the number of
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terminal symbols can exceed |w|, a derivation cannot involve more than
2 fw| rounds, at which time we either have a successful parsing or w cannot
be generated by the grammar,

While the exhaustive search method gives a theoretical guarantee that
parsing can always be done, its practical usefulness is limited because the
number of sentential forms generated by it may be excessively large. Exactly
how many sentential forms are generated differs from case to case: no precise
general result can be established, but we can put some rough upper bounds
on it. If we restrict ourselves to leftmost derivations, we can have no more
than |P| sentential forms after one round, no more than |P|° sentential
forms after the second round, and so on. In the proof of Theorem 5.2, we
observed that parsing cannot involve more than 2 |w| rounds; therefore, the
total number of sentential forms cannot exceed

M =[P+ |PP+. ..+ P (5.2)

This indicates that the work for exhaustive search parsing may grow ex-
ponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (5.2) is only a bound, and often the num-
ber of sentential forms is much smaller. Nevertheless, practical observation
shows that exhaustive search parsing is very inefficient in most cases.

The construction of more efficient parsing methods for context-free
grammars is a complicated matter that belongs to a course on compilers.
We will not pursue it here except for some isolated results.

For every context-free grammar there exists an algorithm that parses any
w € L(G) in a number of steps proportional to jw)’.
Sa==C

There are several known methods to achieve this, but all of them are
sufficiently complicated that we cannot even describe them without devel-
oping some additional results. In Section 6.3 we will take this question up
again briefly. More details can be found in Harrison 1978 and Hoperoft
and Ullman 1979. One reason for not pursuing this in detail is that even
these algorithms are unsatisfactory. A method in which the work rises with
the third power of the length of the string, while better than an exponential
algorithm, is still quite inefficient, and a compiler based on it would need an
excessive amount of time to parse even a moderately long program. What
we would like to have is a parsing method which takes time proportional to
the length of the string. We refer to such a method as a linear time parsing
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algorithm. We do not know any linéar time parsing methods for context-
free languages in general, but such algorithms can be found for restricted,
but important, special cases.

A context-free grammar G = (V, T, S, P) is said to be a simple grammar
or s-grammar if all its productions are of the form

A-—azx,

where A€V, aeT, xeV* and any pair (A4, a) occurs at most once in P.

The grammar
S — aS|bSS5|c
is an s-grammar. The grammar
8§ — aS|bSS5|aSS|c

is not an s-grammar because the pair (8, a) occurs in the two productions
S —aSand §— aSS.
|

While s-grammars are quite restrictive, they are of some interest. As
we will see in the next section, many features of common programiming
languages can be described by s-grammars.

If G is an s-grammar, then any string w in L (G) can be parsed with an
effort proportional to {w|. To see this, look at the exhaustive search method
and the string w = @iay -+ - a,. Since there can be at most one rule with
S on the left, and starting with a; on the right, the derivation must begin
with

5 = a1A1A2 e Am.

Next, we substitute for the variable Ay, but since again there is at most one
choice, we must have

Sé}alagﬂlBQ"'Ag"'Am.

We see from this that each step produces one terminal symbol and hence
the whole process must be completed in no more that |w| steps.




Example 5.10

Figure 5.4

5.2 PARSING AND AMBIGUITY 141

Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w € L(G),
exhaustive search parsing will produce a derivation tree for w. We say “a”
derivation tree rather than “the” derivation tree because of the possibility
that a number of different derivation trees may exist. This situation is
referred to as ambiguity.

Definition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w € L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more lefimost or rightmost deriva-
tions.

The grammar in Example 5.4, with productions § — aSb[SS|A, is am-
biguous. The sentence aabb has the two derivation trees shown in Figure

5.4.
N

Ambiguity is a common feature of natural languages, where it is tol-
erated and dealt with in a variety of ways. In programming languages,
where there should be only one interpretation of each statement, ambiguity
must be removed when possible. Often we can achieve this by rewriting the
grammar in an equivalent, unambiguous form.

—.H,l'l & —
§ S 5
v
= A 5 T £L — & . 1Y -
a § b A a (& ] [ &
g . — X "
i X b a L &
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Consider the grammar G = (V, T, E, P) with

V={EI},
T = '{(l,b,&"",*,(,)},

and productions

E— 1,

F—-FE+E,
FE — ExE,
E—(E),
I —alble

The strings (a + b)*c and axb + ¢ are in L(G). It is easy to see that
this grammar generates a restricted subset of arithmetic expressions for C
and Pascal-like programming languages. The grammar is ambiguous. For
instance, the string a + bxc has two different derivation trees, as shown in
Figure 5.5. -

One way to resolve the ambiguity is, as is done in programming manuals,
to associate precedence rules with the operators + and *. Since * normally
has higher precedence than +, we would take Figure 5.5(a) as the correct
parsing as it indicates that bc is a subexpression to be evaluated before
performing the addition. However, this resolution is completely outside the
grammar. It is better to rewrite the grammar so that only one parsing is
possible.
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To rewrite the grammar in Example 5.11 we introduce new variables, taking
V as {E,T, F, I} and replace the productions with

E-=T,
T7— F,
F—1,
L—E+T,
T—T=xF,
- (E),
I —albe.

A derivation tree of the sentence a + b * ¢ is shown in Figure 5.6. No other
derivation tree is possible for this string: the grammar is unambiguous. It
also is cquivalent to the grammar in Example 5.11. It is not too hard to
justify these claims in this specific instance, but, in general, the questions of
whether a given context-free grammar is ambiguous or whether two given
context-frec grammars are equivalent are very difficult to answer. In fact,
we will later show that there are no general algorithms by which these
questions can always be resolved. .

B =

In the foregoing example the ambiguity came from the grammar in
the sense that it could be removed by finding an equivalent unambiguous
grammar. In some instances, however, this is not possible because the
ambiguity is in the language.
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If L is a context-free language for which there exists an unambiguous gram-
mar, then L is said to be unambignous. If every grammar that generates L
is ambiguous, then the language is called inherently ambiguous.

It is a somewhat difficult matter even to exhibit an inherently am-
biguous language. The best we can do here is give an example with some
reasonably plausible claim that it is inherently ambiguous.

The language
L — { ﬂ,n bﬂ C’TTI.} U { an b'lTL C‘FTL} ,

with n and m non-negative, is an inherently ambiguous context-free lan-
guage.
That L is context-free is easy to show. Notice that

L =LiULs,

where Ly is generated by

51— SiclA,
A — aAb|A,

and Lo is given by an analogous grammar with start symbol Sz and pro-
duetions

SQ — (115'2137
D — bBc|A.

Then L is generated by the combination of these two grammars with the
additional production

S — SllSQ.

The grammar is ambiguous since the string a”d"e™ has two distinct
derivations, one starting with § = 57, the other with § = S3. It does of
course not follow from this that L is inherently ambiguous as there might
exist some other nonambiguous grammars for it. But in some way L) and L
have conflicting requirements, the first putting a restriction on the number
of a’s and b’s, while the second does the same for b’s and ¢'s. A few tries will
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quickly convince you of the impossibility of combining these requirements
in a single set of rules that cover the case m = m uniquely. A rigorous
argument, though, is quite technical. One proof can be found in Harrison
1978.

EXERCISES

C],—\/ Find an s-grammar for L (aaa*b + b).

2‘
3.

(9

Find an s-grammar for L = {a"b™ : n > 1}. @
Find an s-grammar for L = {a"""* :n > 2}.
Show that every s-grammar is unambiguous.

Let G = (V,T, S, P) be an s-grammar. Give an expression for the maximum

~ size of P in terms of |V| and |T|.

10.

11.
12,

13.

14,

15.
16.
17.

.~ Show that the following grammar is ambiguous.

S — AB|aaB,
A — a|Aa,
B-b &

Construct an unambiguous grammar equivalent to the grammar in Exercise 6.

Give the derivation tree for (((a-b) = ¢)) +a + b, using the grammar in
Example 5.12.

Show that a regular language cannot be inherently ambiguous. @

Give an unambigucus grammar that generates the st of all regular expres-
sions on ¥ = {a, b}.

Is it possible for a regular grammar to be ambiguous?

Show that the language L = {ww Hw g {a, b}*} is not inherently ambigu-
ous.

Show that the following grammar is ambiguous.

S — aSbhS |bSaS| A

Show that the grammar in Exatple 5.4 is ambiguous, but that the language
denoted by it is not. @ :

Show that the grammar in Example 1.13 is ambiguous.
Show that the grammar in Example 5.5 is unambiguous.

Use the exhaustive scarch parsing method to parse the string abbbbbb with
the grammar in Example 5.5. In general, how many rounds will be needed
to parse any string w in this language?




146

Chapter 5 CONTEXT-FREE LANCGUAGES

18. Show that the grammar in Example 1.14 is unambiguous.

19. Prove the following result. Let G = (V, T, S, P) be a context-free grammar in
which every A € V occurs on the left side of at most one production. Then
G is unambiguous.

20. Find a grammar equivalent to that in Example 5.5 which satisfies the condi-
tions of Theorem 5.2. &

¢ Context-Free Grammars and
Programming Languages

One of the most important uses of the theory of formal languages is in the
definition of programming languages and in the construction of interpreters
and compilers for them. The basic problen here is to define a programming
language precisely and to use this definition as the starting point for the
writing of efficient and reliable translation programs. Both regular and
context-free langnages are important in achieving this. As we have seen,
regular languages are used in the recognition of certain simple patterns
which oceur in programming languages, but as we argued in the introduction
to this chapter, we need confext-free languages to model more complicated
aspects.

As with most other languages, wo can define a programming language
by a grammar. It is traditional in writing on programming languages to
use a convention for specifying grammars called the Backus-Naur form or
BNF. This form is in essence the same as the notation we have used here,
but the appearance is different. In BNF, variables are enclosed in triangular
brackets. Terminal symbols are written without any special marking. BNF
also uses subsidiary symbols such as |, much in the way we have done. Thus,
the grammar in Example 5.12 might appear in BNF as

(expression) u= (term) | (expression) + (term)
(term) == (factor) | (term) = {factor},

and 80 on. The symbols + and x are terminals. The symbol | is used
as an alternator as in our notation, but ::= is used instead of —. BNF
descriptions of programming languages tend to use more explicit variable
identifiers to make the intent of the production explicit. But otherwise there
are no significant differences between the two notations.

Many parts of a Pascal-like programming language are susceptible to
definition by restricted forms of context-free grammars. For example, a
Pascal if-then-else statement can be defined as

(i f_statement) 1= if (expression) (then_clause) (else_clause) .
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Here the keyword if is a terminal symbol. All other terms are variables
which still have to be defined. If we check this against Definition 5.4, we see
that this looks like an s-grammar production. The variable (i f_statement)
on the left is always associated with the terminal if on the right. For
this reason such a statement is easily and efliciently parsed. We see here
a reason why we use keywords in programming languages. Keywords not
only provide some visual structure that can guide the reader of a program,
but also make the work of a compiler much easier.

Unfortunately, not all features of a typical programming language can
be expressed by an s-grammar. The rules for (expression) above are not of
this type, so that parsing becomes less obvious. The question then arises for
what grammatical rules we can permit and still parse efficiently. In compil-
ers, extensive use has been made of what are called LL and LR grammars,
which have the ability to express the less obvious features of a programming
language, vet allow us to parse in linear time. This is not a simple matter,
and much of it is beyond the scope of our discussion. We will briefly touch
on this topic in Chapter 6, but for our purposes it suffices to realize that
such grammars exist and have been widely studied.

In connection with this, the issue of ambiguity takes on added signifi-
cance. The specification of a programming language must be unambiguous,
otherwise a program may yield very different results when processed by
different compilers or run on different systems. As Example 5.11 shows, a
naive approach can easily introduce ambiguity in the grammar. To avoid
such mistakes we must be able to recognize and remove ambiguities. A
related question is whether a language is or is not inherently ambiguous.
What we need for this purpose are algorithms for detecting and remov-
ing ambiguities in context-free grammars and for deciding whether or not
a. context-free language is inherently ambiguous. Unfortunately, these are
very difficult tasks, impossible in the most general sense, as we will see later.

Those aspects of a programming language which can be modeled by a
context-free grammar are usually referred to as its syntax. However, it
is normally the case that not all programs which arc syntactically correct
in this sense are in fact acceptable programs. For Pascal, the usual BNF
definition allows constructs such as

var x,y : real;

x, z :integer
or

var T tnteger;
r=3.2.

Neither of these two constructs is acceptable to a Pascal compiler, since they
violate other constraints, such as “an integer variable cannot be assigned
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a real value.” This kind of rule is part of programming language semarn-
tics, since it has to do with how we interpret the meaning of a particular
construct.

" Programming language semantics are a complicated matter. Nothing
as elegant and concise as context-free grammars exists for the specification
of programming language semantics, and consequently some semantic fea-
tures may be poorly defined or ambiguous. It is an ongoing concern both
in programming languages and in formal language theory to find effective
methods for defining programming language semantics. Several methods
have been proposed, but none of them have been as universally accepted
and as successful for semantic definition as context-free languages have been
for syntax.

EXERCISES

Give a complete definition of {ezpression) for Pascal.

2. Cive a BNF definition for the Pascal while statement (leaving the general
concept {statement) undefined).

3. (ive a BNF grammar that shows the relation between a Pascal program and
its subprograms.

Give a BNF definition of a FORTRAN do statement.
Clive a definition of the correct form of the if-else statement in C.

Find examples of features of C that cannot be described by context-free gram-
IAars.




