Properties of
Regular Languages

e have defined regular languages, studied some ways in which they
can be represented, and have seen a foew examples of their usefulness.
We now raise the question of how general regular languages arc.
Could it be that every formal language is regular? Perhaps any
set we can specify can be accepted by some, albeit very complex, finite
automaton. As we will see shortly, Lthe answer to this conjecture is definitely
no. But to understand why this is so, we must inquire more deeply into the
nature of regular languages and see what propertics the whole family has.

The first question we raise is what happens when we perform operations
on regular languages. The operations we consider are simple set operations,
such as concatenation, as well ag operations in which each string of a lan-
guage is changed, as for instance in FExercise 22, Scction 2.1. Is the result-
ing language still regular? We refer to this as a closure question. Closure
properties, although mostly of theoretical intercst, help us in discriminating
between the various language families we will encounter.,

A sccond set of questions about language families deals with our ability
to decide on certain properties. For cxample, can we tell whether a language

99

100

Chapter 4 PROPERTIES OF REGULAR LANCUAGES

is finite or not? As we will see, such questions are easily answered for regular
languages, but are not as easily answered for other language families.

Finally we consider the important question: How can we tell whether
a given language is regular or not? If the language is in fact regular, we
can always show it by giving some dfa, regular expression, or regular gram-
mar for it. But if it is not, we need another line of attack. One way to
show a language is not regular is to study the general properties of regular
languages, that is, characteristics that are shared by all regular languages.
If we know of some such property, and if we can show that the candidate
language does not have it, then we can tell that the language is not regular.

In this chapter, we look at a variety of properties of regular languages.
These properties tell us a great deal about what regular languages can and
cannot do. Later, when we look at the same questions for other language
families, similarities and differences in these propertics will allow us to con-
trast the various langnage families.

Closure Properties of Regular Languages

Consider the following question: Given two regular languages L; and Ly, is
their union also regular? In specific instances, the answer may be obvious,
but here we want to address the problem in general. Is it true for all regular
Ly and L5? It turns out that the answer is yes, a fact we express by saying
that the family of regular languages is closed under union. We can ask
similar questions about other types of operations on languages; this leads
us to the study of the closure properties of languages in general.

Closure properties of various language families under different opera-
tions are of considerable theoretical interest. At first sight, it may not be
clear what practical significance these properties have. Admittedly, some of
them have very little, but many results are useful. By giving us insight into
the general nature of language families, closurc properties help us answer
other, more practical questions. We will see instances of this (Theorem 4.7
and Example 4.13) later in this chapter.

Closure under Simple Set Operations

We begin by looking at the closure of regular languages under the common
set operations, such as union and intersection.

If L; and Lo are regular languages, then so are Ly U Lo, L1 N Ly, Ly Ly, Ly
and L¥. We say that the family of regular languages is closed under union,
intersection, concatenation, complementation, and star-closure.

Proof: If L; and Ly are regular, then there exist regular expressions r and
ro such that Ly = L (r} and Ly = L (r2). By definition, ry + 74, r172, and

4.1 CLOSURE PROPERIIES OF REGULAR LANGUACES 101

% are regular expressions denoting the languages Ly U Ly, LiLo, and L7,
respectively. Thus, closure under union, concatenation, and star-closure is
immediate.

To show closure under complementation, let M = (@, X, 8,40, F) be a
dfa that accepts Ly. Then the dfa

MEI: (Q3276?QO7Q_F)

accepts L. This is rather straightforward; we have already suggested the
result in Exercise 4 in Scction 2.1. Note that in the definition of a dfa,
we assumed §* to be a total function, so that &* (qy,w) is defined for all
w € T*. Consequently either §* (go, w) is a final state, in which case w € L,
or &% (qp,w) € Q@ — Fand w € L.

Demonstrating closure under interscction takes a little more work. Let
L] = L(Ml) and Lo = L(Mz)., where M1 = (Q,E,él,qo,ﬂ) and My =
(P, T, 82, po, F2) are dfa’s. We construct from M) and Mz a combined au-

tomaton M = (Q,E,g; (g0, D0) ﬁ'), whose state set J = Q x P consists

of pairs (q;,p;), and whose transition function ¢ is such that M is in state
(gi,p;) whenever M is in state ¢; and M; is in state p;. This is achieved
by taking

3'((¢1,L-,pj) va) = (g, p1),
whenever
81 (giya) = qx
and
82 (pj,a) = pi.

F is defined as the set of all (i, py), such that ¢; € F) and p; € F3. Then
it is a simple matter to show that w € L M Ly if and only if it is accepted
by M. Consequently, L1 N Ly is regular. =

g |

The proof of closure under intersection is a good example of a construc-
tive proof. Not only does it cstablish the desired result, but it also shows
explicitly how to construct a finite accepter for the intersection of two reg-
ular languages. Constructive proofs occur throughout this book; they are
important because they give us insight into the results and often serve as
the starting point for practical algorithms. Here, as in many cases, there
are shorter but nonconstructive (or at least not so obviously constructive)
arguments. For closure under intersection, we start with DeMorgan’s law,
Equation (1.3), taking the complement of both sides. Then

LlﬂL2:Z1UIQ

102

Chapfer 4 PROPERTIES OF REGULAR LANGUAGES

for any languages Ly and L,. Now, if L; and Ls are regular, then by closure
under complementation, so are Ly and L. Using closure under union, we
next get that I; UL is regular. Using closure under complementation once
more, we see that

LiULy =L N Ly

is regular.
The following example is a variation on the same idea.

Show that the family of regular languages is closed under difference. In
other words, we want to show that if L; and Lo are regular, then Ly — Lo
is necessarily regular also.

The needed set identity is immediately obvious from the definition of a
set difference, namely

Li—Ly=I,NL,
The fact that L is regular implies that Ly is also regular. Then, because

of the closure of regular languages under intersection, we know that L; N L,
is regular, and the argument is complete. -

A variety of other closure properties can be derived directly by elemen-
tary arguments.

The family of regular languages is closed under reversal.

Proof: The proof of this theorem was suggested as an exercise in Section
2.3. Here are the details. Suppose that L is a regular language. We then
construct an nfa with a single final state for it. By Exercise 7, Section
2.3, this is always possible. In the transition graph for this nfa we make
the initial vertex a final vertex, the final vertex the initial vertex, and re-
verse the direction on all the edges. 1t is a fairly straightforward matter
to show that the modified nfa accepts w?® if and only if the original nfa
accepts w. Therefore, the modified nfa accepts L®, proving closure under
reversal. m

4.1 CLOSURE IPROPERTIES OF REGULAR LANGUAGES 103

Closure under Other Operations

In addition to the standard operations on languages, one can definie other
operations and investigate closure properties for them. There are many such
results; we select only two typical ones. Others are explored in the exercises
at the cnd of this section.

Suppose X and I' are alphabets. Then a function
h:Y—1T"

is called a homomorphism. In words, a homomorphism is a substitution
in which a single letter is replaced with a string. The domain of the function
h is extended to strings in an obvious {ashion; if

W= Q14 " * p,
then
hiw)=h{a)h(az) - h{a,).
If L is a language on X, then its homomorphic image is defined as

h(L)={h{(w):we L}.

Let ¥ = {a,b} and [= {a,b, ¢} and define h by
h(a) = ab,
h (b) = bbc.

Then h (aba) = abbbcah. The homomorphic image of I = {aa, aba} is the
language h (L) = {abab, abbbcab}.
|

If we have a regular expression r for a language L, then a regular ex-
pression for A (L) can be obtained by simply applying the homomorphism
to each ¥ symbol of r.

104

Chapfer 4 PROPERTIES OF REGULAR LANGUAGES

Take £ = {a,b} and I" = {b, ¢, d}. Definc h by

h(a) = dbee,
h (b) = bde.

If L is the regular language denoted by
r=(a+b")(aa)”,
then
r1 = (dbce + (bde)”) (dbeedbece)”

denotes the regular language h (L).
B

The general result on the clogure of regular languages under any hotno-
morphism follows from this example in an obvious manner.

Let h be a homomorphism. If L is a regular language, then its homomorphic
image h (L) is also regular. The family of regular languages is therefore
closed under arbitrary homomorphisms.

Proof: Let L be a regular language denoted by some regular expression
r. We find h(r) by substituting & (a) for each symbol a € ¥ of r. It can
be shown directly by an appeal to the definition of a regular expression
that the result is a regular expression. It is equally easy to see that the
resulting expression denotes h(L). All we need to do is to show that for
every w € L (r), the corresponding h (w) is in L (k (r)) and conversely that
for every v in L (h(r)) there is a w in L, such that v = h (w). Leaving the
details as an exercise, we claim that h (L) is regular. m

3 ool ot PR
LT i \ ‘\\%
LA e W Y

Let L1 and L+ be languages on the same alphabet. Then the right quotient
of L| with Lo is defined as

Li/Ly = {z:xy € L; for some y € La}. (4.1)

To form the right quotient of Ly with Ly, we take all the strings in Ly that
have a suffix belonging to La. Every such string, after removal of this suffix,
belongs to Ly/Ls.

4.1 CLOSURE PROPERTIES OF REGULAR LANGUAGES 1058

Figure 4.1

If
Li={a"" :n>1,m >0} U {ba}
and
Ly={b":m =1},
then

Li/Ly={a"b" :n>1,m>0}.

The strings in Ly consist of one or more b’s. Therefore, we arrive at the
answer by removing one or more b's from those strings in L; that terminate
with at least one b as a suffix,

Note that here Ly, La, and Li/Ly are all regular. This suggests that
the right quotient of any two regular languages is also regular. We will
prove this in the next theorem by a construction that takes the dfa's for
Ly and Ly and constructs from them a dfa for L,/Ls. Before we describe
the construction in full, let us see how it applies to this example. We start
with a dfa for L,; say the automaton M, = (Q,%, 6, g, F) in Figure 4.1.
Since an automaton for L,/ Ly must accept any prefix of strings in L, we
will try to modify M, so that it accepts x if there is any y satisfying (4.1).

b

106

Figure 4.2

Chapter 4 PROPERTIES OF REGULAR LANGUACES

The difficulty comes in finding whether there is some y such that zy € Ly
and y € Ly. To solve it, we determine, for cach ¢ € @, whether there is a
walk to a final state labeled v such that v € Lp. If this is s0, any z such
that 8 (g, z) = q will be in Ly/Ly. We modify the automaton accordingly
to make ¢ a final state. '

To apply this to our present case, we check each state gy, q1, g2, 3, 4,
gs to see whether there is a walk labeled bb* to any of the g1, g2, or q4. We
see that only ¢ and g2 qualify; qo, ¢3, g4 do not. The resulting automaton
for L;/Ls is shown in Figure 4.2. Check it to see that the construction
works. The idea is generalized in the next theorem. -

If L) and L; are regular languages, then Ly /Ly is also regular. We say that
the family of regular languages is closed under right quotient with a regular
language.

Proof: Let L; = L (M), where M = (2, %,4, qo, F) is a dfa. We construct
another dfa M = (Q, ¥, 4, qo, 1?') as follows. For each ¢; € @), determine if
there exists a y € Lo such that

8 (giy) =qr € F.

This can be done by looking at dfa’s M; = (Q,X,d,¢;, F). The automaton
M, is M with the initial state gg replaced by ¢;. We now determine whether

4.1 - CLOSURE PROPERTIES OF REGULAR LANGUAGES 107

there exists a y in L (M;) that is also in L,. For this, we can use the
construction for the intersection of two regular languages given in Theorem
4.1, finding the transition graph for LoN L (M;). If there is any path between
its initial vertex and any final vertex, then Lz N L (M;) is not empty. In
that case, add ¢; to ﬁ.ﬁ Repeating this for every ¢; € (@, we determine F
and thereby construct M.

To prove that L (ﬁ) = L1/Ls, let © be any element of Ly/L;. Then
there must be a y € Lo such that zy € L;. This implies that
5* (Q(:hmy) S F:

go that there must be some ¢ €) such that

8 (qo,z) = ¢
and

0" (g,y) € .

Therefore, by construction, g € F, and M accepts z because 6* (qo,) is in
F. N
Conversely, for any x accepted by M, we have

0% (qo,x) =q € F.

But again by construction, this implies that there exists a y € Lg such
that 6* (q,y) € F. Therefore xy is in L), and z is in Ly/Ly. We therefore
conclude that

L (JT/I‘) = L,/Ls,

and from this that L, /Lo is regular. m
T |

348\ Find L;/L; for
Ly = L{a™baa™),
L2 =1L (ab*) .
We first find a dfa that accepts L;. This is easy, and a solution is given in

Figure 4.3. The example is simple enough so that we can skip the formalities
of the construction. From the graph in Figure 4.3 it is quite evident that

L(My)N Lz =2,
L(My) N Ly = {a} # &,
L(Ms)N Ly = {a} £ 2,
L(My)NLy=2.°

108 Chopter 4 PROPERTIES OF REGULAR LANGUAGES

Figure 4.3 -
|
3 .'I . A
™y & \ 7
-\ o) 4, A — ——=| 4
|
|
b Fav.
¥
:_1?3
1 \l
a, b
Figure 4.4 g .
\ | - 1
. e = s
- 9}) : -\l ¥
& b
| ?SII
7 (s
| L]
ab

Therefore, the automaton accepting L,/Lg is determined. The result is

shown in Figure 4.4. It accepts the language denoted by the regular ex-

“‘: pression of a*b + a*baa*, which can be simplified to a*ba*. Thus Ly/L; =
© L{(a*ba*).

[|

4.1 CLOSURE PROPERTIES OF REGULAR LANGUAGES 109

EXERCISES

9,

Fill in the details of the constructive proof of closure under intersection in
Theorem 4.1,

Use the construction in Theorem 4.1 to find nfa’s that accept

(a) L((a+b)a")N L (bac*),
(b) L(ab"a”) N L (a*b*a).
In Example 4.1 we showed closure under difference for regular languages,

but the proof was nonconstructive. Provide a constructive argument for this
resuit. :

In the proof of Theorem 4.3, show that h(r) is a regular expression. Then
show that & (r) denotes h (L).

Show that the family of regular languages is closed under finite union and
intersection, that is, if Ly, Ls, ..., L, are regular, then

1={1,2,...,n}
and
LI —_— ﬂ Lz
i={1,2,...,n}

are also regular,

The symmetric difference of two sets 8y and S; is defined as

51982 ={z:x € 81 or x € 8y, but x is not in both §; and S}
Show that the family of regular languages is closed under symmetric differ-
ence.
The nor of two languages is
nor (L1, Lz) ={w:w ¢ L; and w ¢ Ls}.

Show that the family of regular languages is closed under the nor operation.
&

Define fhe complementary or (cor) of two languages by
cor(Li,Lz)={w:w&Li or we Ly},

Show that the family of regular languages is closed under the cor operation.

Which of the following are true for all regular languages and all homomor-

phisms?

(a) h{L1U L2) = h(L1) Uh(Ly) e

(b) R(LiNL2) = h(L1)Nh(Lzy) .False

(©) h(LaLa) =h(Li)h(Ls) Vv

110 Chapter 4 PROPERTIES OF REGULAR LANGUAGES

é;et L, = L(a*baa") and Lz = L (aba*). Find L./Lo.
\O; how that Ly = LiLa/Lz is not true for all languages L and La.
12.) Suppose we know that L; U Lz is regular and that L1 is finite. Can we

N conclude from this that Lo is regular? @

13. If L is a regular language, prove that Ly = {uv : u € L, |v| = 2} is also regular.

14. If L is a regular language, prove that the language {uv rueLlyve LR} 1

also regular. @& ‘

\O\ @) The left quotient of a language L1 with respect to Lz is defined as
LofLi={y:ax € Ly,zy € L}.

! /:))— JQ (—/ o A/élﬁl gt
o v

Fee) ke s 501 VA "Tmaf{cj

(j “ ' 1% Show that the family of regular languages is closed under the left quoticnt
with a regular language.

16. Show that, if the statement “If L; is regular and L1 U Lz is also regular, then

L2 must be regular” were true for all Ly and Ly, then all languages would be

regular, &

17. The tail of a langnage is defined as the set of all suffixes of its strings, that is
tail (L) = {y : zy € L for some z € X}.
Show that if L is regular, so is tail (L).
18. The head of a language is the set of all prefixes of its strings, that is,
head (L) = {z : 3y € L for some y € T*}.

Show that the family of regular languages is closed under this operation.
®

19. Define an operation third on strings and languages as
third (a1a2a304a506 -+) = A3a6 - - -

with the appropriate extension of this definition to languages. Prove the
closure of the family of regular languages under this operation.

20. For a string aias - - - an define the operation shift as

shift(aiaz - an) = az2---ana1.

From this, we can define the operation on a language as
shift (L) = {v:v = shift(w) for some w € L}.

Show that regularity is preserved under the shift operation.

2i Define
D,

and

exchange (a1a2 - - Gn—10n) = Gnl2 - - Gn-101,

ezchange (L) = {v : v = exchange (w) for some w € L}.

Show that the family of regular languages is closed under exchange.

4.2 ELEMENTARY QUBSTIONS ABOUT REGULAR LANGUAGES 111

* 22, The shuffle of two languages L; and L, is defined as

shuﬁle (Ll,Lz) = {T.Uj_'Uj Wava r - WmUm P WiW2.. . Wm € Ll,

V1¥2...Vm € Lz, for all wi,v; € £*}
Show that the family of regular languages is closed under the shuffle
operation.

* 23. Define an operation minusé on a language L as the set of all strings of L with
the fifth symbol from the left removed (strings of length less than five are left
unchanged). Show that the family of regular languages is closed under the
rminusd operation,

* 24, Define the operation leftside on L by

leftside (L) = {w ww® € L} .

Is the family of regular languages closed under this operation?

25. The min of a language L is defined as

min (L) ={w € L: thereis no u € L,v € &7, such that w = uv} .

Show that the family of regular languages is closed under the msn operation.

Qq@ Let Gy and G2 be two regular grammars. Show how one can derive regular
grammars for the languages

(a) L(G1)UL(G:) ®
(b) LG L(G,) ®
(¢) L(G1)* @&

Elementary Questions about
Regular Languages

We now come to a very fundamental issue: Given a language L and a string
w, can we determine whether or not w is an element of I? This is the
membership question and a method for answering it is called a member-
ship algorithm. Very little can be done with languages for which we cannot
find efficient membership algorithms. The question of the existence and na-
ture of membership algorithms will be of great concern in later discussions;
it is an issue that is often difficult. For regular languages, though, it is an
easy matter.

We first consider what cxactly we mean when we say “given a lan-
guage....” In many arguments, it is important that this be unambiguous.
We have used several ways of describing regular languages: informal verbal

112

Chapter 4 PRrOPERTIES OF REGULAR LANGUAGES

descriptions, set notation, finite automata, regular expressions, and regu-
lar grammars. Only the last three are sufficiently well defined for use in
theorems. We therefore say that a regular language is given in a stan-
dard representation if and only if it is described by a finite automaton,
a regular expression, or a regular grammar.

Given a standard representation of any regular language L on 2 and any
w € ©*, there exists an algorithm for determining whether or not w is in L.

Proof: We répresent the language by some dfa, then test w to sce if it is
accepted by this automaton. =
L]

Other important questions are whether a language is finite or infinite,
whether two languages are the same, and whether one language is a subset of
another. For regular languages at least, these questions are easily answered.

There exists an algorithm for determining whether a regular langnage, given
in standard representation, is empty, finite, or infinite.

Proof: The answer is apparent if we represent the language as a transition
graph of a dfa. If there is a simple path from the initial vertex to any final
vertex, then the language is not empty.

To determine whether or not a language is infinite, find all the vertices
that are the base of some cycle. If any of these are on a path from an initial
to a final vertex, the language is infinite. Otherwise, it is finite. m

The question of the equality of two languages is also an important prac-
tical issue. Often several definitions of a programming language exist, and
we need to know whether, in spite of their different appearances, they spec-
ify the same language. This is generally a difficult problem; ¢ven for regular
languages the argument is not obvious. It is not possible to argue on a
sentence-by-sentence comparison, since this works only for finite langnages.
Nor is it easy to see the answer by looking at the regular expressions, gram-
mars, or dfa’s. An elegant solution uses the already ecstablished closure
properties.

Given standard representations of two regular languages Ly and Lo, there
exists an algorithm to determine whether or not Ly = Lo.

Proof: Using Ly and L, we define the language
Ls={LiNnLz)U(LiNLa).

4.2 ELEMENTARY QUESTIONS ABOUT REGULAR LANGUAGES 113

By closure, Ly is regular, and we can find a dfa M that accepts L;. Once
we have M we can then use the algorithm in Theorem 4.6 to determine if
L3 18 empty. But from Exercise 8, Section 1.1 we see that Ly = & if and
onlyif Ly =Ly m

These results are fundamental, in spite of being obvious and unsurpris-
ing. For regular languages, the questions raised by Theorems 4.5 to 4.7 can
be answered easily, but this is not always the case when we deal with larger
families of languages. We will encounter questions like these on several oc-
casions later on. Anticipating a little, we will see that the answers become
increasingly more difficult, and eventually impossible to find.

EXERCISES

For all the exercises in this section, assume that regular languages are given
in standard representation. '

1. Show that there exists an algorithm to determine whether or not w & Ly—Ls,
for any given w and any regular languages L, and Lo. @&

2. Show that there exists an algorithm for determining if Ly C Ly, for any
regular languages L1 and I,. @@

3. Show that there exists an algorithm for determining if A € L, for any regular
language L.

4. Show that for any regular L1 and L, there is an algorithm {o determine
whether or not Ly, = Ly /L.

5. A language is said to be a palindrome language if L = L®. Find an algorithm
for determining if a given regular language is a palindrome language. @

6. Exhibit an algorithm for determining whether or not a regular language L
contains any string w such that w?® e ..

7. Exhibit an algorithm that, given any three regular languages, L, L1, L1, de-
termines whether or not L = L.

8. Exhibit an algorithm that, given any regular language L, determines whether
ornot L = L",

9. Let L be a regular language on ¥ and # be any string in ¥*. Find an
algorithm to determine if L contains any w such that i is a substring of it,
that is, such that w = uwiiv, with u,v € £*.

10. Show that there is an algorithm to determine if L = shuf fle (L, L) for any
regular L.

11. The operation tail (L) is defined as

tail (L) = {v:uwv € Lyu,v € &},

/1

{ 114
\

Chapter 4 PROPERTIES OF RECULAR LANGUAGES

Show that there is an algorithm for determining whether or not L = tail (L)
for any regular L.

12. Let L be any regular language on ¥ = {a, b}. Show that an algorithm exists
for determining if L contains any strings of even length,

13. Kind an algorithm for determining whether a regular language L contains an
infinite number of even-length strings.

I 1. Describe an algorithm which, when given a regular grammar G, can tell us
whether or not L (G) = X",

Identifying Nonregular Languages

Regular languages can be infinite, as most of our examples have demon-
strated. The fact that regular languages are associated with automata that
have finite memory, however, imposes some limits on the structure of a
regular language. Some narrow restrictions must be obeyed if regularity
is to hold. Intuition tells us that a language is regular only if, in process-
ing any string, the information that has to be remembered at any stage is
strictly limited. This is true, but has to be shown precisely to be used in
any mecaningful way. There are several ways in which this precision can be
achieved.

Using the Pigeonhole Principle

The term “pigeonhole principle” is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m, then at least one box must have more than one item in it.
This is such an obvious fact that it is surprising how many deep results can
be obtained from it.

Is the language L = {a™" : n > 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some dfa M = (@, {a, b}, 4, qo, F') exists for
it. Now look at §* (go,a’) for i = 1,2,3,.... Since there are an unlimited
number of #’s, but only a finite number of states in M, the pigeonhole
principle tells us that there must be some state, say ¢, such that

(Slic (qo,a;‘n) = q
and

3" (Q()a a"m) =4,

4.3 IDENTIFYING NONREGULAR LANGUAGES 115

with n # m. But since M accepts a™b™ we must have
0% (q,b") =qp € F.
From this we can conclude that
6* (g0, a™b") = 6" (6" (g0,0™) ,6")
= 0" (g, b")
= qy-

This contradicts the original assumption that M accepts a™b” only if n =
m, and leads us to conclude that L cannot be regular.
L

In this argument, the pigeonhole principle is just a way of stating pre-
cisely what we mean when we say that a finite automaton has a limited
memory. To accept all a™b™, an automaton would have to differentiate be-
tween all prefixes a™ and a™. But since there are only a finite number of
internal states with which to do this, there are some n and m for which the
distinction cannot be made.

In order to use this type of argument in a variety of situations, it is
convenient to codify it as a general theorem. There are several ways to do
this; the one we give here is perhaps the most famous one.

A Pumping Lemma

The following result, known as the pumping lemma for regular languages,
uses the pigeonhole principle in another form. The proof is based on the
observation that in a transition graph with n vertices, any walk of length n
or longer must repeat some vertex, that is, contain a cycle.

Let L be an infinite regular language. Then there exists some positive
integer m such that any w € L with jw| > m can be decomposed as

w=xyz,
with
lzyl < m,
and
lyl = 1,
such that
w; = xy'z, (4.2)

isalsoin Lforalli=0,1,2, ...

116

Chapter 4 PROPERTIES OF REGULAR LANGUAGES

To paraphrase this, every gufficiently long string in L can be broken
into three parts in such a way that an arbitrary number of repetitions of
‘the middle part yields another string in L. We say that the middle string
is pumped ” hence the term pumpmg lemma for this result.

Proof: If L is regular, there exists a dfa that recognizes it. Let such a
dfa have states labeled ¢, 41,42, -.., ¢n. Now take a string w in L such that
|w‘[_.>;wm_§_n+ 1[Since L is assumed to be infinite, this can always be done.
‘onsider the set of states the automaton goes through as it processes w,
say

Qo, Qi gy s df.

Since this sequence has exactl , at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus
the sequence must look like

qoy Qis Qo - Grs v Gy ey 4,

indicating there must be substrings ,y, z of w such that

§* (g0, T) = qr,
5 (gr ¥) = ar,
6* (q.,,-,Z) =47,

with |zy] €< n+ 1 =m and |y| > 1. From this it immediately follows that

6" (g0, 22) = g,

as well as

8" (CInin’.Uzz) =4y,
8" (QO:CE?Jsz) =dy,

and so on, completing the proof of the theorem. m
I

We have given the pumping lemma only for infinite langnages. Finite
langnages, although always regular, cannot be pumped since pumping auto-
matically creates an infinite set. The theoren does hold for finite languages,
but it is v@caot® The m in the pumping lemma is to be taken larger than
the longest string, so that no string can be pumped.

The pumping lemma, like the pigeonhole argument in Example 4.6, is
used to show that certain languages are not regular. The demonstration
is always by contradiction. There is nothing in the pumping lemina, as we
have stated it here, which can be used for proving that a language is regular.

4.3 IDENTIFYING NONREGULAR LANGUAGES 117

Even if we could show (and this is normally quite difficult) that any pumped
string must be in the original language, there is nothing in the statement
of Theorem 4.8 that allows us to conclude from this that the language is
regular.

Using the pumping lemma to show that L = {«¢™b™ : n > 0} is not regular.
Assume that L is regular, so that the pumping lemmma must hold. We do
not know the value of m, but whatever it is, we can always chogse n = m.
Therefore, the substring y must consist entircly of a’s. Suppose |y| = k.3
Then the string obtained by using ¢ = 0 in Equation (4.2) is -

wy = ﬂ'rn.—k. pm™

and is clearly not in L. This contradicts the pumping lemma and thereby
indicates that the assumption that L is regular must be false.
u

In applying the pumping lemma, we must keep in mind what the the-
orem says. We are guarantced the existence of an m as well as the decom-
position zyz, but we do not know what they are. We cannot claim that we
have reached a contradiction just because the pumping lemma is violated
for some specific values of m or zyz. On the other hand, the pumping
lemma holds for every w € L and every i. Therefore, if the pumping lemma
is violated even for one w or 7, then the language cannot be regular.

The correct argument can be visualized as a game we play against an
opponent. Our goal is to win the game by cstablishing a contradiction of
the pumping lemma, while the opponcent tries to foil us. There are four
moves in the game.

% 1, The opponent picks rn.

2. Given m, we pick a string w in L of length equal or greater than m.
We are free to choose any w, subject to w € L and |w| = m.

3. The opponent chooses the decomposition zyz, subject to |zy| < m, |y| =
1. We have to assume that the opponent makes the choice that will make
it hardest for us to win the game.

4. We try to pick ¢ in such a way that the pumped string w;, defined in
Equation (4.2), is not in L. If we can do so, we win the gamec.

A strategy thal allows us to win whatcver the opponent’s choices is

gLl valed (n Ve bt tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decom-

position of w, we may be able to choose w so that the opponent is very

118 Chapter 4 PROPERTIES OF REGULAR LANGUAGES

Figure 4.5

restricted in Step 3, forcing a choice of z, y, and z that allows us to produce
a violation of pumping lemma on our next move.

e
: i
o)
A i

v Let ¥ = {a,b}. Show that

.

N’-'O"/E f}laf W, 5/70'_,%/ Lz{wwR:wEE*}

),g o f +4 € Lotm coum ? is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w
as shown in Figure 4.5. Because of this choice, and the requirement that

Je i Ceanad /@rc e ||zy| <mi, the opponent is restricted in Step 3 to choosing a y that consists

entirely of a’s. In Step 4, we use ¢ = 0. The string obtained in this fashion

Zo / la vg 67: cal a has fewer a’s on the left than on the right and so cannot be of the form
. - g ww. Thercfore L is nol regular.

or L)'7 S € e x- Note that il we had chosen w too short, then the opponent could have

chosen a y with an even number of »’s. In that case, we could not have
Aol Fuore To |x ,:?7[reached a violation of the pumping lemma on the last step. We would also
fail if we were to choose a string consisting of all a’s, say,
71}?{ ju il w; };-u'[

l}m f, Z%"//Cvﬂg #o Z, .
’ </

w = a’™ ,

which is in L. To defeat us, the opponent need only pick
Y = aa.

Now w; is in L for all 4, and we lose.

To apply the pumping lemma we cannot assume that the opponent will
make a wrong move. If, in the case where we pick w = a*™, the opponent
waore to pick

Y =a,

then wy is a string of odd length and therefore not in L. But any argu-
ment that assumes that the opponent is so accommodating is automatically
incorrect.

Example 4.9

4.3 THeNTIFYING NONREGULAR LANGUAGES 119

Let 3 = {a,b}. The language
= {w e X% :n, (w) < np(w)}

is. not regular.

Suppose we are given m. Since we have complete freedom in choosing
w, we pick w = a™b™+L. Now, because |zy| cannot be greater than m, the
opponent cannot do anything but pick a y with all a’s, that is

yzak, 1<k <in.
We now pump up, using ¢ = 2. The resulting string
- a{7n,+kbm+1

(7

is not in L. Therefore, the pumping lemma is violated, and L is not regular.

Example 4.10

Example 4.11

The language
L={(ab)"a" :n>kk =0}

is not regular.
(Given m, we pick as our string

w= (c:ab)mJrl a™

which is in L. Because of the constraint |zy| < m, both x and y must be
in the part of the string made up of ab’s. The choice of x does not affect
the argumeﬂf 50 let us see what can be done with y. If our opponent picks
(3=d, we choose 1 = 0 and get a string not in L (((zb)) If the opponent
picks y = ab)ywe can choose i = 0 again. Now we get the string (ab}™ a™,
.. which_is not in. L. In the same way, we can deal with any possible choice

by the opponent, thereby proving our claim.

L
Show that
L= {a"! :n >0}
is not regular.
Given the opponent’s choice for m, we pick as w the string ™' (unless

al

the opponent picks m < 3, in which case we can use ¢” as w). The various

120

Chapter 4 PROPERTIES OF REGULAR LANGUAGES

decompositions of w obviously differ only in the lengths of the substrings.
Suppose the opponent picks y such that

lyl =k < m.

We then look at xzz which has length m! — k. This string is in L only if
there exists a 7 such that

m! — k = j!
But this is impossible, since for m > 2 and k < m we have
misml—k>(m-1)!

Therefore, the language is not regular,

In some cases, closure properties can be used to relate a given problem
to one we have already classified. This may be much simpler than a direct
application of the pumping lemma.

Show that the language
L={a™*c¢"t* :n >0,k >0}

is not regular.
It is not difficult to apply the pumping lemma directly, but it is even
easier to use closure under homomorphism. Take

h{a) =a,h(b) =a,h(c)=c
e
h(L) = {a™ e i n 4 k >0}
={d'c :i >0},

but we know this language is not regular; therefore L cannot be regular
either.
||

show that the language
L={a"tin#l}

is not regular.

4.3 TDENTIFYING NONRECGULAR LANGUAGES 121

Here we need a bit of ingenuity to apply the pumping lemma dircctly.
Choosing a string with n = [+ 1 or n = [4+ 2 will not do, since our opponent
can always choose a decomposition that will make it impossible to pump
the string out of the language (that is, pump it so that it has an equal
number of a’s and b’s). We must be more inventive. Let us take n = m)!
and [= (m+ 1)I. If the opponent now chooses a y (by necessity consisting
of all a’s) of length k£ < n, we pump ¢ times to generate a string with
m!+ (1 — 1)k a’s. We can get a contradiction of the pumping lemma if we
can pick ¢ such that

ml+ (1 —1)k = (m+ 1)!
This is always possible since

m !
k

i=1

and k& < m. The right side is therefore an integer, and we have succeeded
in violating the conditions of the pumping lemimna.

However, there is a much more elegant way of solving this problem.
Suppose I, were regular. Then, by Theorem 4.1, I and the language

would also be regular. But L; = {a"b" : n = 0}, which we have already

classified as nonregular. Consequently, L cannot be regular.
||

The pumping lemma is difficult for several reasons. Its statement is
complicated, and it is easy to go astray in applying it. But even if we
master the technique, it may still be hard to see exactly how to use it. The
pumping lemma is like a game with complicated rules. Knowledge of the
rules is essential, but that alone is not enough to play a good game. You
also need a good strategy to win. If you can apply the pumping lemma
correctly to some of the more difficult cases in this book, you are to be
congratulated.

EXERCISES

(Q Prove the following version of the pumping lemma. If L is regular, then there
is an m such thal, every w € L of length greater than m can be decomposed
as

w = TYZ,

122 Chapter 4 PROPERTIES OF REGULAR LANGUAGES

with

lyz| < m,
vl =1,

such that zy'z is in L for all i.

2. Prove the following generalization of the pumping lemma, which includes
Theorem 4.8 as well as Exercisc 1 as special cases.

If L is regular, then there exists an m, such that the following holds for
every sufficiently long w € L and cvery one of its decompositions w = u1vuz,
with w1, u2 € X*,|v| 2 m. The middle string v can be written as v = zyz,
with |zy| < m, |y| > 1, such that wizy*zus € L for all i =0,1,2, ... @&

3. Show that the language L = {w: nq (w) =ny (w)} is not regular. Is L*
regular?

@j Prove that the following languages are not regular.
(a) L= {(L"blak tk>n +$} &
(b) L = {a"bla}‘c 1k #n+1}
{a“bl i n—lori’;ék}

¢) L={w:n,(w)#£n(w)} 8
f) L ={ww:we {a,b}"}
(g) I.= {wwww cw € {a,b}” }

(c)
(d) L= {a“bl n < l}
(e)
—(

@ Determine if the following languages on % = {a} are regular.

~ - (a) L= {a”:n > 2, nis a prime number}
N, s
G ‘/)) Pﬂcd’ _/L..,-‘, gl D) L ={a" : 7 is not a prime number} 5 2
. _ K N
{‘p.{w_) \/vr (¢) L={a":n=k forsome k >0} —sa | a
(d) L={a™:n=2" for some k > 0})

(e) L = {a" : n is the product of two prime numbers}
(

f) L = {a™ : n is either prime or the product of two or more prime numbers}

6. Apply the pumping lemma directly to show the result in Example 4.12.

A \‘)‘K. Show that the following language is not regular. 5 N K- \
_S'\i V\?'c; \ \ ‘" k(\ i\“'-"‘” B [N 7
) 0 %(A \7 & Q\Q‘ - \
A L= a”b‘:n}k}u{ n#k—l}
My . mamems T S NIV (_jo/

Prove or disprove the following statement. If L, and Ly are nonregular lan-
guages, then L; U Ly is also nonregular. &

'\.r-\

{
Py By

4.3 IDENTIFYING NONREGULAR LANGUAGES 123

9. 1Consider the languages below. For each, make a conjecture whether or not it
is regular. Then prove your conjecture.

(a) L={a"b'a*:n+l+k>5} @

(b)y L= {a”b‘a;" :n>51>3,k <1} &
(c) L= {a"bl tnflis an integer}

(d) L ={a"¥ :n+11is a prime number}
(e) L= {a,""b" n << ’Z'n}

(1) L= {a™':n>100,1 <100}

= 2]

@ 1s the following language regular?

(g) L={a™:|n -1

L = {wicws : wr,ws € {a,b}" ;w1 # wa}

) .
@- Let Ly and Ly be regular languages. Is the language L = {w cwe L, wf e Lg_}
necessarily regular? @

12. Apply the pigeonhole argument directly to the language in Example 4.8.
& 13:) Are the following languages regular?

(a) L= {wwwv:u,v,we {(J,,b}+}]

*(b) L= {uwwlv:uv,we {ab}" | > v} @ [

—

14,/ Is the following language regular?

L= {ww“'u s, w € {a, b}+}

oo
e QEE)LEL P be an infinite but countable set, and associate with each p € PP a
7 language L,. The smallest sct containing every L, is ithe union over the
infinite set P’; it will be denoted by UpepLp. Show by example that the

family of regular languages is not closed under infinite union. &

* 16. Consider the argument in Section 3.2 that the language associated with any
generalized transition graph is regular. The language associated with such a
graph is

L={]JL(r),

pEP

where P is the set of all walks through the graph and r, is the expression
associated with a walk p. The set of walks is generally infinite, so that in light
of Exercise 15, it does not mnmediately follow that L is regular. Show that
in this case, because of the special nature of P, the infinite union is regular.

124 Chopter 4 PROPERTIES OF REGULAR LANGUAGES

Ll *@Is the family of regular languages closed under infinite intersection? @&

VIV @Suppose that we know that L; U La and L1 are regular. Can we conclude
‘ from this that Lo is regular?

19. In the chain code language in Exercise 22, Section 3.1, let L be the set of
all w € {u,r,1,d}" that describe rectangles. Show that L is not a regular
language.

