Regular Languages
and Regular
Grammars

accepter for it. Therefore, every regular language can be described
by some dfa or some nfa. Such a description can be very useful,
for example, if we want to show the logic by which we decide if a
given string is in a certain language. But in many instances, we need more
concise ways of describing regular languages. In this chapter, we look at
other ways of representing regular languages. These representations have
important practical applications, a matter that is touched on in some of the
examples and exercises.

q ccording to our definition, a language is regular if there exists a finite

' Regular Expressions

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols
from some alphabet ¥, parentheses, and the operators +, :, and *. The
simplest case is the language {a}, which will be denoted by the regular
expression a. Slightly more complicated is the language {a, b, c}, for which,

71

72

Example 3.1

Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

using the + to denote union, we have the regular expression a+b+c. We use
. for concatenation and * for star-closure in a similar way. The expression
(a+b-e)" stands for the star-closure of {a} U {bc}, that is, the language
{\, a,be, aa, abe, bea, bebe, aaa, aabe, ...}

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct
familiar arithmetic expressions.

Let % be a given alphabet. Then

1. &, A, and a € ¥ are all regular expressions. These are called primitive
regular expressions.

2. If r; and 7y are regular expressions, so are r1 + 72, 71 - T2, T}, and (r1).

3. A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a finite number of applications of the
rules in (2).

For ¥ = {a,b, ¢}, the string
(a+b-0)" - (c+ @)

is a regular expression, since it is constructed by application of the above
rules. For example, if we take ry = ¢ and ro = @, we find that ¢+ @
and (¢+ @) are also regular expressions. Repeating this, we eventually
generate the whole string. On the other hand, (a + b+) is not a regular
expression, since there is no way it can be constructed from the primitive

regular expressions.
|

3.1 REGULAR EXPRESSIONS 73

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is
a regular expression, we will let L (r) denote the language associated with
r. This language is defined as follows:

Definition 3.2

The language L (r) denoted by any regular expression r is defined by the
following rules.

1. @ is a regular expression denoting the empty set,

2.) is a regular expression denoting {A},

3. for every a € %, a is a regular expression denoting {a}.
If ry and ro are regular expressions, then

4. L(ry+7r2)=L(r1)UL(re),

5. L(ry-rg) = L(r1)L(rs),

6. L((r)) = L(r),

7. L(r}) = (L(r))"

The last four rules of this definition are used to reduce L (r) to simpler
components recursively; the first three are the termination conditions for
this recursion. To see what language a given expression denotes, we apply
these rules repeatedly.

Exhibit the language L (a* - (a + b)) in set notation.

L(@* (a+8) = L(a") L(a+b)
— (L(@)* L (@ULE)
= {}, a,aa, aaq, ...} {a, b}
= {a, aa,aaaq,...,b,ab, aabd, ...}

T4

Vers ﬂcz)Y\\\mm A

Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

There is one problem with rules (4) to (7) in Definition 3.2. They define
a language precisely if 7 and 7, are given, but there may be some ambigu-
ity in breaking a complicated expression into parts. Consider, for example,
the regular expression a - b+ ¢. We can consider this as being made up of
ry =a-band rp = ¢. In this case, we find L (a- b+ ¢) = {ab,c}. But there
is nothing in Definition 3.2 to stop us from taking 11 = a and 7o = b +c.
We now get a different result, L(a-b+¢) = {ab,ac}. To overcome this,
we could require that all expressions be fully parenthesized, but this gives
cumbersome results. Instead, we use a convention familiar from mathemat-
ics and programming languages. We establish a set of precedence rules for
evaluation in which star-closure precedes concatenation and concatenation
precedes union. Also, the symbol for concatenation may be omitted, so we
can write ry7o for vy - mo.

With a little practice, we can see quickly what language a particular
regular expression denotes.

Example 3.4

For % = {a, b}, the expression
r=(a+b)* (a+bb)
is regular. It denotes the language
L (r) = {a, bb, aa, abb, ba, bbb, ...} .

We can see this by considering the various parts of 7. The first part, (a + b)",
stands for any string of a’s and b’s. The second part, (a + bb) represents
either an a or a double b. Consequently, L(r) is the set of all strings on
{a,b}, terminated by either an a or a bb.

n

The expression
r = (aa)” (bb)"* b

denotes the set of all strings with an even number of a’s followed by an odd
number of b’s; that is

L(r)={a®*"*' :n 20, m>0}.

Going from an informal description or set notation to a regular expression

tends to be a little harder.
| |

——

3.1 REGULAR EXPRESSIONS 75

For ¥ = {0, 1}, give a regular expression r such that
L(r) = {w € I : w has at least one pair of consequtive zeros} .

One can arrive at an answer by reasoning something like this: Every string
in L (r) must contain 00 somewhere, but what comes hefore and what goes
after is completely arbitrary. An arbitrary string on {0,1} can be denoted
by (0+ 1)*. Putting these observations together, we arrive at the solution

= (0+1)"00(0+1)"

Find a regular expression for the language
L= { w € {0,1}" : w has no pair of consecutive zer()s} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever a 0 occurs, it must be
followed immediately by a 1. Such a substring may be preceded and followed
by an arbitrary number of 1’s. This bugg(‘stb that the answer involves the
repetition of strings of the form 1---101.--1, that is, the language denoted
by the regular expression (1*01 'l*)*. However, the answer is still incomplete,
since the strings ending in 0 or consisting of all 1’s are unaccounted for.
After taking care of these special cases we arrive at the answer

= (1*011%)* (04 A) + 1* (04 N).

If we reason slightly differently, we might come up with another answer.
If we see L as the repetition of the strings 1 and 01, the shorter expression

= (1+01)*(0+X)

might be reached. Although the two expressions look different, both answers
are correct, as they denote the same language. Generally, there are an
unlimited number of regular expressions for any given language.

Note that this language is the complement of the language in Example
3.5. However, the regular expressions are not very similar and do not suggest
clearly the close relationship belween the languages. -

The last example introduces the notion of equivalence of regular ex-
pressions. We say the two regular expressions are equivalent if they denote
the same language. One can derive a variety of rules for simplifying regular

76

Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

expressions (soe Exercise 18 in the following exercise section), but since we
have little need for such manipulations we will not pursue this.

EXERCISES

Find all strings in L ((a + b)" b(a + ab)™) of length less than four.

2. Does the expression ((0 4 1) (04 1)*)" 00 (0 + 1)* denote the language in Ex-
ample 3.57 @

3. Show that r = (1+01)* (0 + 17) also denotes the language in Example 3.6.
Find two other equivalent expressions.

(4_) Find a regular expression for the set {a™d™ : (n +m) is even}.
C 5_) Give regular expressions for the following languages.

(a) Ly = {a"b™,n > 4,m < 3}, -]

(b) Ly = {a™b™ :n < 4,m < 3},

(¢) The complement of L, @

(d) The complement of Lj.

@ What languages do the expressions (@*)" and a@ denote?

7. Give a simple verbal description of the language L ((aw)"b(aa)"+
a (aa)* ba (aa)”).

8. Give a regular expression for L" where L is the language in Exercise 1.
(f;) Give a regular cxpression for L = {a"b™ :n > 1,m > 1,nm > 3}. ®
10) Find a regular expression for L = {ab™w :n > 3,w € {a,b}"}.
11. Find a regular expression for the complement of the language in Example 3.4.
12. Find a regular expression for L = {vwv : v,w € {a,b}",|[v| =2}. @&

13. Find a regular expression for
L ={w e {0,1}" : w has exactly one pair of consecutive zeros}

~

141 Give regular expressions for the following languages on 3. = {a, b, c}.

(a) all strings containing exactly one a,
{(b) all strings containing no more than three a’s,

(c) all strings that contain at least one occurrence of each symbol in
z, @

(d) all strings that contain no run of a’s of length greater than two,

* (e) all strings in which all runs of a’s have lengths that are multiples
of three.

3.1 REGULAR EXPRESSIONS k4

('1-5) Write regular expressions for the followfng languages on {0,1}.

a) all strings ending in 01,

all strings containing an even number of 0’s, @®

(c

(a)
(b) all strings not ending in 01,
)
(d)

all strings having at least two occurrences of the substring 00
(Note that with the usual interpretation of a substring, 000 con-

tains two such occurrences),
all strings with at most two occurrences of the substring 00,

(e

* () all strings not containing the substring 101.

e

16) Find regular expressions for the following languages on {a, b}.

17.
18.

(a) L={w: |w/mod3 =0} @&
(b) L = {w : na (w)mod 3 = 0}
(¢) L= {w:ng(w)mod5 >0}
Repeat parts (a), (b), and (c) of Exercise 16, with £ = {a, b, c}.

Determine whether or not the following claims are true for all regular expres-
sions r1 and r2. The symbol = stands for equivalence of regular expressions
in the sense that beth expressions denote the same language.

(a) (r1)" =ri,

(b) i (r1 4+ 72)* = (r1 +r2)",

(c) (1 +r2)* = (rir3)", @ ‘
)

(d) (rir2)" =7rirs.

19. Give a general method by which any regular expression r can be changed into

20.

21.

22

23

7 such that (L (v))* = L (7).
Prove rigorously that the cxpressions in Example 3.6 do indeed denote the
specified language.

For the case of a regular expression r that does not involve X or @, give a
set of necessary and sufficient conditions that r must satisfy if L (r) is to be
infinite.

Formal Janguages can be used to describe a variety of two-dimensional figures.
Chain-code languages are defined on the alphabet ¥ = {u,d, r, 1}, where these
symbols stand for unit-length straight lines in the dircctions up, down, right,
and left, respectively. An example of this notation is urdl, which stands for
the squarc with sides of unit lerigth, Draw pictures of the figures denoted by
the expressions (rd)*, (urddru)”, and (ruldr)®.

In Exercise 22, what are sufficient conditions on the expression so that the
picture is a closed contour in the sense that the beginning and ending point
are the same? Are these conditions also necessary?

78 Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

@D’ind an nfa that accepts the language L (aa™ (a + b)).

@FDFind a regular expression that denotes all bit strings whose value, when in-
" terpreted as a binary integer, is greater than or equal to 40. &

26. Find a regular expression for all bit strings, with leading bit 1, interpreted as
a binary integer, with values not between 10 and 30.

Connection Between Regular Expressions and
Regular Languages

As the terminology suggests, the connection between regular languages and
regular expressions is a close one. The two concepts are essentially the
same; for every regular language there is a regular expression, and for every
regular expression there is a regular language. We will show this in two
parts.

Regular Expressions Denote Regular Languages

We first show that if » is a regular expression, then L (r) is a regular lan-
guage. Our definition says that a language is regular if it is aceepted by some
dfa. Because of the equivalence of nfa’s and dfa’s, a language is also regular
if it is accepted by some nfa. We now show that if we have any rcgular
expression r, we can construct an nfa that accepts L (r). The construction
for this relies on the recursive definition for L (r). We first construct simple
automata for parts (1), (2), and (3) of Definition 3.2 on page 73, then show
how they can be combined to implement the more complicated parts (4),
(5), and (7).

Let r be a regular expression. Then there exists some nondeterministic
finite accepter that accepts L (r). Consequently, L (r) is a regular language.

Proof: We begin with automata that accept the languages for the simple
regular expressions @, A, and a € . These are shown in Figure 3.1(a),
(b), and (c), respectively. Assume now that we have automata M (r;) and
M (r.) that accept languages denoted by regular expressions r and ra,
respectively. 'We need not explicitly construct these automata, but may
represent them schematically, as in Figure 3.2. Tn this schema, the graph
vertex at the left represents the initial state, the one on the right the final
state. In Exercise 7, Section 2.3 we claimed that for every nfa there is an
equivalent one with a single final state, so we lose nothing in assuming that
there is only one final state. With M (r;) and M (r) represented in this
way, we then construct automata for the regular expressions ry + rg, r79,
and ri. The constructions are shown in Figures 3.3 to 3.5. As indicated

3.2 CONNECTION BETWEEN REGULAR EXPRESSIONS AND REGULAR LANGUAGES 79

Figure 3.1 e A e a
(a) nfa accepts @.
(a) (b) (©

(b) nfa accepts {A}.
(c) nfa accepts {a}.

Figure 3.2 MO .

o / N
Schematic | S SN O
representation of an ol N

nfa accepting L ().

in the drawings, the initial and final states of the constituent machines lose
their status and are replaced by new initial and final states. By stringing
together several such steps, we can build automata for arbitrary complex
regular expressions.

It should be clear from the interpretation of the graphs in Figures 3.3
to 3.5 that this construction works. To argue more rigorously, we can give a
formal method for constructing the states and transitions of the combined
machine from the states and transitions of the parts, then prove by induction
on the number of operators that the construction yields an automaton that
accepts the language denoted by any particular regular expression. We will
not belabor this point, as it is reasonably obvious that the results are always
correct. m '

O e ———

Find an nfa which accepts L (r), where

7 = (a+bb)* (ba* + A).

Figure 3.3 - M) =
Automaton for g Y .\}\
L (T‘l + ,',.2)' J‘/. AN '__':__.__:’..; | \1
—_— E:
- M(r;) _

80

Figure 3.4
Automaton for

L (rir2).

Figure 3.5
Automaton for
L(ri).

Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

' Mir,) M(r,)
== = SR = N = S PN =\
—)‘,.l’ L 7_.-]'. | A _._.: L 1 =2]
/ \ N Vi \ i)
i
¥ ; Miry) =
— '-_,..u. e
- "/-'
I

Automata for (a + bb) and (ba* + X), constructed directly from first princi-
ples, are given in Figure 3.6. Putting these together using the construction
in Theorem' 3.1, we get the solution in Figure 3.7 -

Figure 3.6

(a) My accepts
L (a + bb).

(b) M2 accepts
L (ba™ + A).

Figure 3.7
Automaton accepts
L ((a+bb)"

(ba™ + A)).

3.2 CONNECTION BETWEEN REGULAR EXPRESSIONS AND REGULAR LANGUAGES 81

Regular Expressions for Regular Languages

It is intuitively reasonable that the converse of Theorem 3.1 should hold,
and that for every regular language, there should exist a corresponding
regular expression. Since any regular language has an associated nfa and
hence a transition graph, all we need to do is to find a regular expression
capable of generating the labels of all the walks from ¢y to any final state.
This does not look too difficult but it is complicated by the existence of
cycles that can often be traversed arbitrarily, in any order. This creates
a bookkeeping problem that must be handled carcfully. There are several
ways to do this; one of the more intuitive approaches requires a side trip
into what are called generalized transition graphs. Since this idea is
used here in a limited way and plays no role in our further discussion, we
will deal with it informally.

A generalized transition graph is a transition graph whose edges are

labeled with regular expressions; otherwise it_is the same ag the usual tran-

sition graph. /The label of any walk from the initial state to a final state is
the concatenation of several regular expressions, and hence itself a regular
expression. The strings denoted by such regular expressions are a subset
of the language accepted by the generalized transition graph, with the full
language being the union of all such generated subsets.

Example 3.8

Figure 3.8

Figure 3.8 represents a generalized transition graph. The language accepted
by it is L (a* + a* (a + b) ¢*), as should be clear from an inspection of the
graph. The edge (go, go) labeled a is a cycle that can generate any number
of a’s, that is, it represents L (a*). We could have labeled this edge o*
without changing the language accepted by the graph. .

The graph of any nondeterministic finite accepter can be considered
a generalized transition graph if the edge labels are interpreted properly.
An edge labeled with a single symbol a is interpreted as an edge labeled
with the expression a, while an edge labeled with multiple symbols a,b, ...
is interpreted as an edge labeled with the expression a + b+ From
this observation, it follows that for every regular language, there exists a

82

Figure 3.9

Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

4 .-l('_*rl" L—g_-_"}:

generalized transition graph that accepts it. Conversely, every language
accepted by a generalized transition graph is regular, Since the label of

‘every walk in a generalized transition graph is a regular expression, this

appears to be an immediate consequence of Theorem 3.1. However, there
are some subtleties in the argument; we will not pursue them here, but refer
the reader instead to Exercise 16, Section 4.3 for details.

Equivalence | for generalized transition ﬂ‘taph&. is deﬁuenl in terms of the
langnage ac c‘Per| Consider a generalized tra ~.11 ion graph with states
{Wtﬁ@ﬁm etag and for which we
want to create an eqiiivalent generalized transition graph with one less state
by removing q. We can do this if we do not change the language denoted
by the set of labels that can be generated as we go from go to gs. The
construction that achieves this is illustrated in Figure 3.9, where the state
q is to be removed and the edge labels a, b, ... stand for general expressions.
The case depicted is the most general ;n-fhe sense that ¢ has outgoing edges
to all three vertices ¢i,q;,q. In cases where an edge is missing in (a), we

omit the corresponding edge in (b).

The construction in Figure 3.9 shows which edges have to be introduced
so that the language of the generalized transition graph does not change
when we remove g and all its incoming and outgoing edges. The complete
process requires that this be done for all pairs (gi,¢;) in @ — {q} before
removing ¢. Although we will not formally prove this, it can be shown that
the construction yields an equivalent generalized transition graph. Accept-
ing this, we are ready to show how any nfa can be associated with a regular
expression.

Let L be a regular language. Then there exists a regular expression 7 such
that L = L (r).

Proof: Let M be an nfa that accepts L. We can assume without any
loss of generality that M has only one final state and that go ¢ F. We
interpret the graph of M as a generalized transition graph and apply the
above construction to it. To remove a vertex labeled g, we use the scheme
in Figure 3.9 for all pairs (g;, g;). After all the new edges have been added,

3.2 CONNECTION BETWEEN REGULAR EXPRESSIONS AND REGULAR LANGUAGES 83

Figure 3.10 "y 4

~(2)
\--__H__'_,_/'
£

X e (e (v

g with all its incident edges can be removed. We continue this process,
removing one vertex after the other, until we reach the situation shown in
Figure 3.10. A regular expression that denotes the language accepted by
this graph is

r=rire(ry +r3rirTe)”. (3.1)

Since the sequence of generalized transition graphs are all equivalent to
the initial one, we can prove by an induction on the number of states in
the generalized transition graph that the regular expression in (3.1) denotes
L =m

———

Consider the nfa in Figure 3.11(a). The corresponding generalized transition
graph after removal of state g; is shown in Figure 3.11(b). Making the
identification ry = b+ ab*a, o = ab*b, r3 = &, r4 = a + b, we arrive at the
regular expression

r=(b+ab*a)" ab*b(a+b)*

for the original automaton. The construction involved in Theorem 3.2 is
tedious and tends to give very lengthy answers, but it is completely routine
and always works.

L

brab*a

Figure 3.11 b 4 W asb
= |
Ve ab*
o@iPO=)
a
(a) (b)

84 Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

Find a regular expression for the language
L= {w e {a,b}" : na (w) is even and ny (w) is odd} .

An attempt to construct a regular expression directly from this description
leads to all kinds of difficulties. On the other hand, finding a nfa for it is
eagy as long as we usge vertex labelmg effectively. We label the vertices with
EE to denote an even number of a’s and b's, with OE to denote an odd
number of a’s and an even number of b’s, and so on. TWith this we easily
get the solttion in Figure 3.12.

We can now apply the conversion to a regular expression in a mechanical
way. First, we remove the state labeled OE, giving the generalized transition
graph in Figure 3.13.

Next, we remove the vertex labeled QO. This gives Figure 3.14.
Finally, we apply (3.1) with .

/’/ r1 = aa + ab (bb)" ba, k
" py=b+ab(bb)a, -
T3 =>b+a(bb)"ba,

.\ ra=a(bb) a
T T -

Figure 3.12

Figure 3.13

3.2 CONNECTION BETWEEN REGULAR EXPRESSIONS AND REGULAR LANGUAGES 85

— - ——,

o b(bb)"b afdd)”
Figure 3.14 m‘.a_ / % ! ! “

i. ...' b+ afbb)ba '-.1 _,."
W T
—(EE) '.@1
— - TN
b+ ab(bh)'

The final expression is long and complicated, but the way to get it is rela-
tively straightforward.
_n

Regular Expressions for Describing Simple Patterns

In Example 1.15 and in Exercise 15, Section 2.1, we explored the connection
between finite accepters and some of the simpler constituents of program-
ming languages, such as identifiers, or integers and real numbers. The re-
lation between finite automata and regular expressions means that we can
also use regular expressions as a way of describing these features. This is
easy to see; for example, the sct of all acceptable Pascal integers is defined
by the regular expression ‘v”)"/ éﬂ,\K

sdd*,

where s stands for the sign, with possible values from {+,—, A}, and d
stands for the digits 0 to 9.

Pascal integers are a simple case of what is sometimes called a “pat-
tern,” a term that refers to a set of abjects having some common properties.
Pattern matching refers to assigning a given object to one of several cate-
gories. Offen, the key to successful pattern matching is finding an effective
way to describe the patterns. This is a complicated and extensive area of
computer science to which we can only briefly allude. The example below
is a simplified, but nevertheless instructive, demonstration of how the ideas
we have talked about so far have been found useful in pattern matching.

/;}”ﬁ

\

¥

i
O ‘“\‘”‘”& ‘\x
\ \
‘M\. W \\ \

=

An application of pattern matching occurs in text editing. All text editors
allow files to be scanned for the occurrence of a given string; most editors
extend this to permit searching for patterns. For example, ‘rho editor ed in
the UNIX operating system recognizes the command

\ Zaba (,/ I

=

86

Chapter 3 RrcuiAk LANGUAGES AND REGULAR GRAMMARS

as an instruction to search the file for the first occurrence of the string ab,
followed by an arbitrary number of a’s, followed by a c. We see from this
example that the UNIX editor can recognize regular expressions (although
it uses a somewhat different convention for specifying regular expressions
than the one used here).

A challenging task in such an application is to write an efficient program
for recognizing string patterns. Searching a file for occurrences of a given
string is a very simple programming exercise, but here the situation is more
complicated. We have to deal with an unlimited number of arbitrarily
complicated patterns; furthermore, the patterns are not fixed beforehand,
but created at run time. The pattern description is part of the input, so
the recognition process must be flexible. To solve this problem, ideas from
automata theory are often used.

If the pattern is specified by a regular expression, the pattern recogni-
tion program can take this description and convert it into an equivalent nfa
using the construction in Theorem 3.1. Theorem 2.2 may then be used to
veduce this to a dfa. This dfa, in the form of a transition table, is effectively
the pattern-matching algorithm. All the programmer has to do is to provide
a driver that gives the general framework for using the table. In this way
we can automatically handle a large number of patterns that are defined at
run time.

The efficiency of the program must be considered also. The construction
of finite automata from regular expressions using Theorems 2.1 and 3.1 tends
to yield automata with many states. If memory space is a problem, the state

reduction method described in Section 2.4 is helpful. y
..

EXERCISES

1. Use the construction in Theorem 3.1 to find an nfa that accepts the language
" L (ab*aa + bba*ab).

2. Find an nfa that accepts the complement of the language in Exercise 1.
@ Glive an nfa that accepts the langnage L ((a@ + b)" b(a + bb)”). &
Cl) Find dfa’s that accept the following languages.

(a) L(aa* + aba*b*) &

(b) L(ab(a+ ab)* (a+ aa))
(¢) L ((abab)” + (aaa™ +b)")
(@ L (((aa")" b))

3.2 CONNECTION BETWEEN REGULAR EXPRESSIONS AND REGULAR LANGUAGES 87

5. Find dfa’s that accept the following languages.

(a) L = L(ab"a") UL ((ab)" ba),
(b) L = L(ab*a*) N L ((ab)" ba).
6. Find an nfa for Exercise 15(f), Section 3.1. Use this to derive a regular

expression for that language.

7. Give explicit rules for the construction suggested in Figure 3.9 when various
edges in 3.9(a) are missing,

@Consider the following generalized transition graph.

(a) Find an equivalent gemeralized transition graph with only two
states.

(b) What is the language accepted by this graph? &

)
Q’J\’Vhat language is accepted by the following generalized transition graph?

i@ a+b a+ b

@Find regular expressions for the languages accepted by the following au-
tomata. '

88 Chupter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

11.

(@

y ! B
i / ™ “ / d i
—= - — —_]
()
I b
o T Py
7\ SR N
() () () @
A A A N’
=S s e
a a
- J———
h

Rework Example 3.10, this time eliminating the state OO first.

@ Find a regular expression for the following languages on {a, b}.

i3.

14.

15.
16.
17.

(a) L ={w:mn,(w) and ny (w) are both even}

(b) L= {w: (n, (w) —np (w)) mod 3 = 1}

(€) L= {w: (na (w) — np (w)) mod3 # 0}

(d) L= {w: 2n, (w) + 3ny (w) is even}

Find a regular expression that generates the set of all strings of triplets defin-
ing correct binary addition as in Exercise 23, Section 2.1.

Prove that the constructions suggested by Figure 3.9 generate equivalent
generalized transition graphs.

Write a regular expression for the set of all Pascal real numbers.
Find a regular expression for Pascal sets whose elements are integer numbers.

In some applications, such as programs that check spelling, we may not need
an exact match of the pattern, only an approximate one. Once the notion

3.3 REGULAR GRAMMARS 89

of an approximate match has been made precise, automata theory can be
applied to construct approximate pattern matchers. As an illustration of this,
consider patterns derived from the original ones by inscrtion of one symbol.

Let L be a regular language on ¥ and define
insert (L) = {uav:a € £,uv € L} .

[n effect, insert (L) contains all the words crcated from L by inserting a
spurious symbol anywhere in a word.

* (a) Given an nfa for L, show how one can construct an nfa for insert (L). @

*% (b) Discuss how you might use this to write a pattern-recognition
program for insert (L), using as input a regular expression for L.

* 18. Analogous to the previous cxercise, consider all words that can be formed from
L by dropping a single symbol of the string. Formally define this operation
drop for languages. Construct an nfa for drop (L), given an nfa for L.

'19.) Use the construction in Theorem 3.1 to find nfa’s for L (a@) and L (). Is
) the result consistent with the definition of these languages?

Regular Grammars

A third way of describing regular languages is by means of certain simple
grammars. Grammars are often an alternative way of specifying languages.
Whenever we define a language family through an automaton or in some
other way, we are interested in knowing what kind of grammar we can
associate with the family, First, we look at grammars that gencrate regular
Janguages.

Right- and Left-Linear Grammars

Definition 3.3
A grammar G = (V,T, 5,) is said to be right-linear if all productions
are of the form

A — B,
A — oz,

where A, B € V, and 2 € T*. A grammar is said to be left-linear if all
productions are of the form

A — DBz,

90

Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

or
A—zx.

A regular grammar is one that is ejther right-linear or left-linear.

Note that in a regular grammar, at most one variable appears on the
right side of any production. Furthermore, that variable must consistently
be either the rightmost or leftmost symbol of the right side of any produc-
tion.

The grammar G} = ({S}, {a,b}, 5, P1), with P, given as
S — abS|a

is right-linear, The grammar G = ({9, 1, 52}, {a,b} , S, I»), with produc-
tions

S — Syab,

S] s S] ab|52,

SZ - Q,

i left-linear. Both G and Gj are regular grammars.
The sequence

S = ab8 = ababS = ababa

is a derivation with G,. From this single instance it is easy to conjecture
that L (Gy) is the language denoted by the regular expression r = (ab)" a. In
a similar way, we can see that I (Gz) is the regular language L (aab(ab)").

The grammar G = ({5, 4, B}, {a,b}, S, P) with productions

5 — A,
A — aBJA,
B — Ab,

is not regular. Although every production is either in right-linear or left-
linear form, the grammar itself is neither right-linear nor left-linear, and

Theorem 3.3

3.3 REGULAR GRAMMARS 91

therefore is not regular. The grammar is an cxample of a linear grammar.
A linear grammar is a grammar in which at most one variable camn oceur,
on the right side of any production, withont restriction on the position of
tHis variable. Clearly, a regular grammay is always linear, but not all linear
grammars are regular. T

Our next goal will be to show that regular grammars are associated
with regular languages and that for every regular language there is a regular
grammar. Thus, regular grammars are another way of talking about regular
languages.

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is always
regular. To do so, we construct an nfa that mimies the derivations of a right-
linear grammar. Note that the sentential forms of a right-linear gramiar
have the special form in which there is exactly one variable and it oceurs as
the rightmost symbol. Suppose now that we have a step in a derivation

ab---cD = agb- - cdB,

arrived at by using a production 77 — dE. The corresponding nfa can
imitate this step by going from statc D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to the
variable in the sentential form, while the part of the string already processed
is identical to the terminal prefix of the sentential form. This simple idea is
the basis for the following theorem.

Let G = (V,T,5, P) be a right-linear grammar., Then L (@) is a regular
language.

Proof: We assume that V = {V;, V3,...}, that § = Vj, and that we have
productions of the form Vy — »,V,,V; — Vi, oor Vi = v, Fawis
a string in L (G), then because of the form of the productions in G, the
derivation must have the form

Vo= nV;
= vV
2 V1V VRV

= U U - VR S W (3.2)

The automaton to be constructed will reproduce the derivation by “con-
suming” each of thesc v’s in turn. The initial state of the automaton will

92

Figure 3.15

Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

be labeled Vj, and for each variable V; there will be a nonfinal state labeled
V;. For each production

Vi — aya3 - anVj,

the automaton will have transitions to connect V; and V; that is, § will be
defined so that

& (Vi,maz - am) = Vj.
For each production
Vi — araz - am,
the corresponding transition of the automaton will be
8* (Vi,mag -+~ am) = V5,

where V7 is a final state. The intermediate states that are needed to do this
are of no concern and can be given arbitrary labels. The general scheme
is shown in Figure 3.15. The complete automaton is assembled from such
individual parts.

Suppose now that w € L (G) so that (3.2) is satisfied. In the nfa there
is, by construction, a path from Vj to V; labeled v, a path from Vi to V;
labeled vy, and so on, so that clearly

Vi € 6% (Vo,w),

and w is accepted by M.

Conversely, assume that w is accepted by M. Because of the way in
which M was constructed, to accept w the automaton has to pass through a
sequence of states Vg, Vi, ... to Vy, using paths labeled vy, vz, Therefore,
w must have the form

wW = MU VUYL

n

Represents V;—a,a,...a,V.

VP P Gl W N R @
OO e. @
- S ~ -

Represents V;—= aja,...a,

3.3 REGULAR GRAMMARS 93

Figure 3.16 — 7Y a b

and the derivation
Vo=V, = 'U]UQVF]‘ = VU2 - -V Vi = Vs - - - Uy

is possible. Hence w is in L (@), and the theorem is proved. m
=== e

Construct a finite automaton that accepts the language generated by the
grammar

‘/0 - CLVl,
Vi — abVlb.

We start the transition graph with vertices V4, V4, and V. The first pro-
duction rule creates an edge labeled a between Vp and Vi. For the second
rule, we need to introduce an additional vertex so that there is a path la-
beled ab between V; and V. Finally, we need to add an edge labeled &
between V; and V, giving the automaton shown in Figure 3.16. The lan-
guage generated by the grammar and accepted by the automaton is the
regular language L ((aab)” ab).

_n

Right-Linear Grammars for Regular Languages

To show that every regular language can be generated by some right-linear
grammar, we start from the dfa for the language and reverse the construc-
tion shown in Theorem 3.3. The states of the dfa now become the variables
of the grammar, and the symbols causing the transitions become the termi-
nals in the productions.

‘Theorem 3.4 If L is a regular language on the alphabet ¥, then there exists a right-linear
grammar G = (V, X, 8, P) such that L = L (G).

94

Chapter 3 ReGuLAR LANGUAGES AND REGULAR GRAMMARS

Proof: Let M = (Q,%,6,q,F) be a dfa that accepts L. We assume that
Q = {4,491, @} and © = {a1,as,...,am}. Construct the right-linear
grammar G = (V, %, §, P) with

V={g0,q1, - qn}
and S = qy. For each trangition
5(qi,a5) = a
of M, we put in P the production
qi = Q4. (3.3)
In addition, if q; is in F, we add to P the production
g — A (3.4)

We first show that G defined in this way can generate every string in
L. Consider w € L of the form

W= a;a;--- .
For M to accept this string it must make moves via

3 (qo, as) = ap,
8 (gp, a5) = @r,

8 (gsyar) = @,
(g,) =gy € F.

By construction, the grammar will have one production for each of these
§’s. Therefore we can make the derivation

*
Jo = UiGp = QiQj0r = Q305 - Akl
= ;5 - OpQgp = QG5+ g, (3.5)

with the grammar G, and w € L (G).
Conversely, if w € L(G), then its derivation must have the form (3.5).
But this implies that

o (QOyaia]’ Coaap) = qf,

completing the proof. =

Figure 3.17

3.3 REGULAR GRAMMARS 95

Mgy a) ={q} | gy—aq, '

| 8(71; a) = {?2} | fH——4q;

SgpB)=1g) | gty |
| 5(72,4)2{9]\} | 2 —ag |

geF | gk |

For the purpose of constructing a grammar, it is useful to note that the
restriction that M be a dfa is not essential to the proof of Theorem 3.4.
With minor modification, the same construction can be used if M is an nfa.

Construct a right-linear grammar for L (aab*a). The transition function for
an nfa, together with the corresponding grammar productions, is given in
Figure 3.17. The result was obtained by simply following the construction in
Theorem 3.4. The string aaba can be derived with the constructed grammar
by

go = aq1 = aaqz: =% aabga = aabagy = aaba.

Equivalence Between Regular Languages and
Regular Grammars

The previous two theorems establish the connection between regular lan-
guages and right-lincar grammars. One can make a similar connection be-
tween regular languages and left-lincar grammars, thereby showing the com-
plete equivalence of regular grammars and regular languages.

A language L is regular if and only if there exists a left-linear grammar G
such that L = L (G).

Proof: We only outline the main idea. Given any left-linear grammar with
productions of the form

A — Bu,
or

A—w,

96

Theorem 3.6

Figure 3.18

Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

we construct from it a right-linear grammar G by replacing every such
production of G with

A—vEB,

or

A — vt

respectively. A few examples will make it clear quickly that L(G) =
A\ R
(L (G)) . Next, we use Exercise 12, Section 2.3, which tells us that the re-

verse of any regular language is also regular. Since G is right-linear, L (é)

is regular. But then so are L ((@))R and L(G). =
memm—— e

Putting Theorems 3.4 and 3.5 together, we arrive at the equivalence of
regular languages and regular grammars.

A language L is regular if and only if there exists a regular grammar G such
that L = L (G).

We now have several ways of describing regular languages: dfa’s, nfa’s,
regular expressions, and regular grammars. While in some instance one or
the other of these may be most suitable, they are all equally powerful. They
all give a complete and unambiguous definition of a regular language. The
connection between all these concepts is established by the four theorems
in this chapter, as shown in Figure 3.18.

| Regular expressions ‘

A

Theorem 3.1 ‘ Theorem 3.2

[|

‘ dfa or nfa

Theorem 3.3 ‘ Theorem 3.4
{

‘ Ea

| Regular grammars

3.3 REGULAR GRAMMARS 97

EXERCISES

1. Construct a dfa that accepts the language generated by the grammar

5 — abA,
A — baB,
B — aA|bb.

2. Find a regular grammar that generates the language L (aa* (ab + a)).
3. Construct a left-linear grammar for the language in Exercise 1.

¥ Construct right- and left-lincar grammars for the language

L={a"v":n>2,m=>3}. &

5. Construct a right-linear grammar for the language L ((aab*ab)”).

/.,) (6.) Find a regular grammar that generates the language on £ = {a, b} consisting
of all strings with no more than three a's.

In Theorem 3.5, prove that L ((”“) = (L(G)R. @

7.
A Suggest a construction by which a left-linear grammar can be obtained from
an nfa directly.

9. Find a left-linear grammar for the language in Exercise 5.
q Find a regular grammar for the language L = {a”b” : n+m is even}. @
11.

Find a regular grammar that generates the language
L= {w € {a,b}" : na (w) + 3ns (w) is even}.
Ly
{ @ Find regular grammars for the following languages on {a, b}.
(a) L= {w:ns(w) and ny (w) arc both even} @
(b)Y L = {w: (ne (w) —mp (w)) mod3 =1}
(¢) L ={w: (nq (w) — ny (w)) mod 3 #£ 0}
(d) L ={w:|na (w) —np (w)| is odd}.

\ @ Show that for every regular language not containing A there exists a right-
linear grammar whose productions are restricted to the forms

A —aB

where A, BeV anda € T.

98 Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

@ Show that any regular grammar G for which L (G) # @ must have at least
one production of the form

A— oz,

where A € V and z € T™.
15. Find a regular grammar that generates the set of all Pascal real numbers.
@Let G1 = (V4,%,51, P1) be right-linear and G2 = (V2,%, 5, P2) be a left

linear grammar, and assume that V4 and V4 are disjoint. Consider the linear
grammar G = ({S}UWV UV,, X, 8, P), where S is not in Vi UVz and P =
{S — 51|82} U P1 U P2, Show that L (G) is regular. @

