Solutions and Hints
for Selected
Exercises

Chapter 1
Section 1.1

5. To prove that two sets are equal, we must show that an element is in
the first set if and only if it is in the second. Suppose z € 57 U Ss.
Then x ¢ 51 U S2, which means that x cannot be in 5; or in Sz, that
isz € 81N S,. Conversely, if z € S, N S, then z is not in S; and « is
not in Sy, that is z € 5, U 5.

6. This can be proven by an induction on the number of sets. Let Z =
51US8;...U8,. Then S U8s...U8, U811 = ZUS8, 1. By the standard
DeMorgan’s law

zZu Sn+1 =ZN ETL“"]-

With the inductive assurnption, the relation is true for up to n sets,
that is,

Z=8Nn8n.N85,.

Therefore

ZUS8p1=81N80..08, NSy,
completing the inductive step.

357

358

ANSWERS

Suppose 51 = S3. Then §1NSy = 5, NSy = $1 NS, = @ and the entire
expression is the empty set. Suppose now that S; # 52 and that there
is an element = in Sy but not in Sy. Then = € 8, so that §; NSy # @.
The complete expression can then not be equal to the empty set.

12. If x is in S7 and z is in S, then z is not in (S; U S2) — S2. Because of
this, a necessary and sufficient condition is that the two sets be disjoint.

15. (c) Since

n! nn—1 21
n" n n nn
is the product of factors less than or equal one. Therefore, n! = O (™).
27. An argument by contradiction works. Suppose that 2 — v/2 were ratio-
nal. Then
n
2-V2=—
m
gives
2m—n
V2 =
m
contradicting the fact that v/2 is not rational.

24, By induction. Suppose that every integer less than n can be written as
a product of primes. If n is a prime, there is nothing to prove, if not, it
can be written as the product

n="ninsz
where both factors are less than n. By the inductive assumption, they
both can be written as the product of primes, and so can n.
Section 1.2

2. Many string identities can be proven by induction. Suppose that (uv

)=
vRuf for all w € £* and all v of length n. Take now a string of length
n+ 1, say w = va. Then

)R R

(uw)™ = (uva)

= a (uv)®, by the definition of the reverse

= av®u®, by the inductive assumption

= ’I,UR’U.R.

By induction then, the result holds for all strings.

4.

10.

11.

13.

13.

14.

SOLUTIONS AND HINTS FOR SELECTED EXERCISLS 359

Since abaabaaabaa can be decomposed into strings ab, aa, baa, ab, aa,
each of which is in L, the string is in L*. Similarly, bacaaabaa is in L*.
However, there is no possible decomposition for baaaaabaaaab, so this
string is not in L*.

(d) We first generate three a’s, then add an arbitrary number of a’s and
b’s anywhere.

S — AaAaAad
A — aAbA| X

The first production gencrates three a’s. The second can generate any

number of a’s and b’s in any position. This shows that the grammar
. * E)

can generate any string w € {a,b}" as long as n, (w) > 3.

S = aA = obS = abaA = ababsS

from which we see that
L(G)={(ab)" :n>0}.

(a) Generate one b, then an equal number of ¢’s and b’s, finally as many
more b’s as needed.

S — AbA
A — aAblA
B — bB|A
(d) The answer is easicr to see if you notice that
Ly={a™™ :m >0}.
This leads to the easy solution
S — aaaA

A — aAb|A

{b) The problem is simplified if you break it into two cases, |w|mod 3 =
1 and |w|mod 3 = 2. The first is covered by

81 — aaaSi|a,

the second by

Sz — aaaSs|aa.

The two can be combined into a single grammar by

5 — 51|52.

360 ANSWERS

16. (a) We can use the trick and results of Example 1.13. Let L; be the
language in Example 1.13 and modify that grammar so that the start
symbol is S;. Consider then a string w € L. If this string start with
an a, then it has the form w = aw;, where wy € L;. This situation can
be taken care of by § — a5;. If it starts with a b, it can be derived by
S — Sl 5.

Section 1.3

1.

integer — sign magnitude
sign — +|—| A
magnitude — digit | digit magnitude
digit — 0]1]2|3]4|5|6|7]8|9

This can be considered an ideal version of C, as it puts no limit
on the length of an integer. Most real compilers, though, place a
limit on the number of digits.

7. The automaton has to remember the input for one time period so
that it can be reproduced for output later. Remembering can be
done by labeling the state with the appropriate information. The
label of the state is then produced as output later.

——H’{l bﬂl@

)

10. We remember input by labeling the states mnemonically. When a set
of three bits is done, we produce output and return to the beginning to
process the next three bits. The following solution is partial, but the
completion should be obvious.

SoLuTiONs AND HINTS FOR SELECTED EXERCISES J61

11. In this case, the transducer must remember the two preceding input
symbols and make transitions so that the needed information is kept
track of.

362 ANSWERS

Chapter 2
Section 2.1

2. (c) Break it into three cases each with an accepting state: no a’s, one a,
two a’s, three a’s. A fourth a will then send the dfa into a non-accepting
trap state. A solution:

b 4 b b a b

~O—0O—0~—0-

5. (a) The first six symbols are checked. If they are not correct, the string
is rejected. If the prefix is correct, we keep track of the last two symbols
read, putting the dfa in an accepting state if the suffix is bb.

7. (a) Use states labeled with |w| mod 3. The solution then is quite simple.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 363

(d) For this we use nine state, with the first part of each label n, (w)mod 3,
the second part np (w) mod 3. The transitions and the final states are
then simple to figure out.

71 b o)

9. (a) Count consecutive zeros, to get the main part of the dfa.

O-0+0-@

Then put in additional transitions to keep track of consecutive zeros
and to trap unacceptable strings.

364

ANSWERS

(d) Here we need to remember all combinations of three bits. This
requires 8 states plus some start-up. The solution is a little long but
not hard. A partial sketch of the solution is below.

13. The casiest way to solve this problem is to construct a dfa for L
{a™ : n = 4}, then complement the solution.

21. (a) By contradiction. Suppose Gj; has no cycles in any path from the
initial statc to any final state. Then every walk has a finite number of
steps, and so every accepted string has to be of finite length. But this
implies that the language is finite.

(b) Also by contradiction. Assume that Gas has some cycle in a path
from the initial state to some accepting statc. We can then use the cycle
to generate an arbitrarily long walk labeled with an accepted string. But
a finite language cannot contain arbitrarily long strings.

SOLUTIONS AND HINTS FOR SELECTED FXERCISES 365

24. There are many different solutions. Here is one of them.

Section 2.2

15.

- 0*(qo,a) = {q0, 01,82}, 0% (q1. A) = {0, 2}

- A four-state solution is trivial, but it takes a little experimenting to get

a three-state one. Here is one answer:

o A

____©a_©/;

No. The string abc has three diffcrent symbols and there is no way this
can be accepted with fewer than threc states,

This is the kind of problem in which you just have to try different ways.
Probably most of your tries will not work. Here is one that does.

17. Introduce a single starting state py. Then add a transition

8 (po, A) = Qy.

Next, remove starting state status from Qq. It is straightforward to see
that the new nfa is cquivalent to the original one.

366 ANSWERS

20. Introduce a non-accepting trap state and make all undefined transitions
to this new state. Solution:

Section 2.3

2. Just follow the procedure nfa_to_dfa. This gives the dfa

7. Introduce a new final state py and for every g € F' add the transitions
d(q,) = {ps}.

Then make p;s the only final state. It is a simple matter then to ar-
gue that if 6* (go,w) € F originally, then 6* (g0, w) = {py} after the
modification, so both the original and the modifies nfa’s are equivalent.

Since this construction requires A-transitions, it cannot be made for
dfa’s. Generally, it is impossible to have only one final state in a dfa,
as can be seen by constructing dfa’s that accept {A,a}.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 367

8. Getting an answer requires some thought. One solution is

LT F\i Ly

HUCE TS W

accepts L, so the language is regular.

14. This is not easy to see. The trick is to use a dfa for L and modify it so
that it remembers if it has read an even or an odd number of symbols.
This can be done by doubling the number of states and adding O or E
to the labels. For example, if part of the dfa is

368

ANSWERS

its equivalent becomes

Now replace all transitions from an E state to an O state with A-
transitions.

With a few examples you should be able to convince yourself that if the
original dfa accepts a;azasas, the new automaton will accept AazAay...,
and therefore even (L).

15. Suppose we have a dfa that accepts L. We then

(a) identify all states @ that can be reached from qg, reading any two-
symbol prefix v, that is

Q={q€Q:6"(q,v) =¢}.
(b) introduce a new initial state pp and add
6 (po, \) = Q.

It should not be hard to see that the new nfa accepts chop2 (L).

Although the construction is plausible, a complete answer requires a
proof of the last statement.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 369

Section 2.4

2.

10.

(¢)

OO ——C)
This is minimal for the following reason. gs ¢ F and qu € F, s0 ¢3 and
qq are distinguishable. Next, 6* (ga,a) ¢ F and 6* {qq, a) € F, s0 g, and
qq are distinguishable. Similarly, §* (¢1,aa) ¢ F and §* (g3,aa) € F,

so g1 and g3 are distinguishable. Continuing this way, we see that all
states are distinguishable and therefore the dfs is minimal.

. First, remove the inaccessible states go and g4. Then use the procedure

mark to find the indistinguishable pairs (¢o, ¢1) and (g3, ¢3). This then
gives the minimal dfa.

. By contradiction. Assume that M is not . minimal. Then we can con-

struct a smaller dfa M that accepts L. In M, complement the final state
set to give a dfa for L. But this dfa is smaller than M, contradicting
the assumption that M is minimal.

By contradiction. Assume that g, and g, are indistinguishable. Since g,
and g, are indistinguishable and indistinguishability is an equivalence
relation (Exercise 7), ¢, and q. must be indistinguishable.

Chapter 3
Section 3.1

2,

5.

Yes, because ((0+1) (0 + 1)*)* denotes any string of 0’s and 1’s. So
does (0 + 1)".

(a) Separate into cases m = 0,1,2,3. Generate 4 or more a’s, followed
by the requisite number of #’s. Solution: aaaaa* (A + b+ bb + bbb).

(¢) The complement of the language in 5(a) is harder to find. A string
is not in L if it is of the form ¢"b™, with either n < 4 or m > 3, but

370

ANSWERS

12,

14.

15.

16.

18.

21.

23.

this does not completely describe L. We must also take in the strings
in which a b is followed by an a. Seclution:

(A + a + aa + aaa) b* + a*bbbbb* + (a + b) " ba(a +b)".

Split into three cases: m=1,n>3,n>2, m=>2,andn=1,m = 3.
Each case has a straightforward solution.

Enumerate all cases with |v] = 2 to get

aa(a+b)" aa+ ab(a+b)" ab+ ba(a+b)" ba + bb(a+ b)" bb.

(¢) You just have to get in each symbol at least once. The term

(a+b+c)ala+btc)bla+bt+e) cla+bte)

will do this, but is not enough since the a will precede the b, etc. For
the complete solution you must generate all permutations of the three
symbols, giving six terms that can be added. The answer, although
quite long, is conceptually not hard.

(¢) Create two 0’s, interspersed with 1’s, then repeat. But don’t forget
the case when there are no ’s at all. Solution: (1*01*01*)" 4+ 1*.

(a) Create all strings of length three and repeat. A short solution is
((a+b+e)(a+b+e)(atb+e)

(¢) The statement
(7‘1 + 7‘2)* = (7‘1*7'2*)*

is true. By the given rules (r; +r2)” denotes the language (L (r1)U
L (r))", that is the set of all strings of arbitrary concatenations of ele-

ments of L (r1) and L (rz). But (r1*r2*)" denotes ((L (r1))" (L (r2))")",
which is the same set.

The expression for an infinite language must involve at least one starred
subexpression, otherwise it can only denote finite strings. If there is one
starred subexpression that denotes a non-empty string, then this string
can be repeated as often as desired and therefore denote arbitrarily long
strings.

A closed contour will be gencrated by an expression r if and only if
ny (r) = n, (r) and ny, (r) = nq (r).

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 371

25. Notice several things. The bit string must be at least 6 bits long. If it
is longer than 6 bits, its value is at least 64, so anything will do. If it is
exactly 6 bits, then either the second bit from the left (16) or the third
bit from the left (8) must be 1. If you see this, then the solution

(1114+110+101) 0+ 1) (0+ 1) (0+ 1) +

1(04+1)(0+1) (0+ 1) (14 0) (1 +0) (1 +0) (1 +0)*

readily suggests itself.

Section 3.2

3. This can be solved from first principles, without going through the
regular expression_to.nfa construction. The latter will of course work,
but gives a more complicated answer. Solution;

a, b
b

4. (a) Start with

Then use the nfa_to_dfa algorithm in a routine manner,

372

ANSWERS

7. One case is

10.

£
c
P»%ﬁ -
a
b

Since there is no path from g; to ¢;, the edges in the general case created
by such & path are omitted. The result, gotten by looking at all possible
paths, is

ce'h

e
ae'h

The other case can be analyzed in a similar manner.

. Removing the middle vertex gives

bb + ab

The language accepted then is L (r) where r = a* (a -+ b) ab (bb + ab+
aa* (a+ b) ab)”.

(b) First, we have to modify the nfa so that it satisfies the conditions
imposed by the construction in Theorem 3.2, one of which is g ¢ F.
This is easily done.

17.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 373

Then remove state 3.

aa+b
Next, remove state 4.

(ab) + (aa + b)ba)* b

~(0—()
The regular expression then is 7 = (ab+ (aa + b) (ba)* bb*)".

(a) This is a hard problem until you see the trick. Start with a dfa
with states gg, ¢1, ..., and introduce a “parallel” automaton with states
T0,G1,---» Then arrange matters so that the spurious symbol nondeter-
ministically transfers from any state of the original automaton to the
corresponding state in the parallel part. For example, if part of the
original dfa looks like

then the dfa with its parallel will be an nfa whose corresponding part

18

It is not hard to make the argument that the original dfa accepts L if
and only if the constructed nfa accepts insert (L).

374 ANSWERS

Section 3.3
4. Right linear grammar:

S — aaA

A — aA|B
B — bbbC
C — bClA

Left linear grammar:

S — Abbb
A -+ AbB
B — aaC
C — aC|\

7. We can show by induction that if w is a sentential form derived with
G, then w? can be derived in the same number of steps by G.
Because w is created with left linear derivations, it must have the
form w = Aw;, with A € V and wy, € T". By the inductive assumption
w? = wl A can be derived via G. If we now apply A — Bv, then

w = Bows.

But G contains the rule A — v®B, so we can make the derivation

wf — wiv®B
= (Bvwy)"
completing the inductive step.

10. Split this into two cases: (i) n and m are both even and (ii) » and m
are both odd. The solution then falls out easily, with

S — aaS|A
A — bbA|A
taking care of case (i).

12. (a) First construct a dfa for L. This is straightforward and gives tran-
sitions such as

8 (q0,a) = q1,9 (qo,b) = @2
d(q1,a) = q0,8(q1,0) = a3
d(q2,a) = 43,9 (g2,0) = qo
8 (g3, a) = ¢2,6(¢3,0) = q

SOLUTIONS AND HINTS FOR SkLECTED EXERCISES 375

with gg the initial and final state. Then the construction of Theorem
3.4 gives the answer

qo — aq |bga| A
q1 — bgz|ago
g2 — ags|bgy
g3 — aqslbg

16. Obviously, 8; is regular as is S3. We can show that their union is also
regular by constructing the following dfa.

nfa for L(G))

nfa for 1(G,)

The condition that V3 and V5 should be disjoint is essential so that the
two nfa’s are distinct.

Chapter 4
Section 4.1

2. (a) The construction is straightforward, but tedious. A dfa for
L{((a+b)a*) is given by

d(q,a) =q1, 0(q0,b)=q, d(q,a)=aq, &(q,b)=aq,
with ¢; a trap state and final state ¢;. A dfa for L (baa*) is given by

5(;007(1) :ptvé‘(po’b) =P1,5(P1,a) = P2,
5(p17b) :pt75(p2aa) :pg,é‘(pg,b) =Pt

with final state ps. From this we find

4 ((qoapo) !a) = (‘hapt) :6 ((QU:pO) 7b) S (q19p1) y
8 ((q1,p1),0) = (¢11,p2)a5((<117p2),a) = (q1,p2),

etc. When we complete this construction, we see that the only final
state is (g1, p2) and that L ((a + b)a*) N L (baa*) = baa*.

376

ANSWERS

7.

12.

14.

16.

18.

26.

Notice that
nor (L1, La) = L1 U La.

The result then follows from closure under intersection and complemen-
tation.

The answer is yes. It can be obtained by starting from the set identity

Lo, = ((Ll ULQ) HE) U (L] ﬂLg) .

The key observation is that since L; is finite, Ly N Ly is finite and
therefore regular for all L. The rest then follows easily from the known
closures under union and complemcutation.

By closure under reversal, L ig regular. The result then follows from
closure under concatenation.

Use Ly = ©*. Then, for any La, Ly U Ly = %*, which is regular. The
given statement would then imply that any Ly is regular.

We can use the following construction. Find all states P such that there
is a path from the initial vertex to some element of P, and from that
element to a final state. Then make every clement of P a final state.

Suppose G1 = (V1,T, 81, P1) and Go = (Vo, T, S2, P2). Without loss of
generality, we can assume that Vi and V5 are disjoint. Combine the two
grammars and

(a) Make S the new start symbol and add productions S — 515,

(b) In P, replace cvery production of the form A — z, with A € V3
and z € T*, by A — z8,.

(c) In Py, replace every production of the form A — z, with A € Vi,
and x € T*, by A — z5,.

Section 4.2

1.

2.

12.

Since by Example 4.1 L — Ly is regular, there exists a membership
algorithm for it.

If Ly C Ly, then Ly U Ly = Lo. Since Ly U Ly is regular and we have an
algorithm for set equality, we also have an algorithm for set inclusion.

. From the dfa for L, construct the dfa for Lf, using the construction

suggested in Theorem 4.2. Then use the cquality algorithm in Theorem
4.7.

Here you need a little trick. If L contains no even length strings, then

LN L((aa+ ab+ba+bb)*) = @.

The left side is regular, so we can use Theorem 4.6.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 377

Section 4.3

2. For the dfa for L to process the middle string v requires a walk in

the transition graph of length |v|. If this is longer than the number
of states in the dfa, there must be a cycle labeled y in this walk. But
clearly this cycle can be repeated as often as desired without changing
the acceptability of a string.

. (a) Given m, pick w = a™b™a*". The string y must then be a* and

11.

13.

the pumped strings will be

w; = (]lm-l-(z-nl)kbman‘

If we take ¢ > 2 then m + (¢ — 1} k > m, then w; is not in L.

(e) It does not seem easy to apply the pumping lemma directly, so we
proceed indirectly. Suppose that L were regular. Then by the closure
of regular languages under complementation, T, would also be regular.
But L = {w: n, (w) = np (w)} which, as is easily shown, is not regular.
By contradiction, L is not regular.

(a) Take p to be the smallest prime number greater or equal to m and
choose w = ¢”. Now y is a string of a’s of length k, so that

w; = Ptk

If we take i — 1 = p, then p+4 (i - 1)k = p(k + 1) is composite and
Wy 18 0ot in the language.

The proposition is false. Asa counterexample, take Ly = {a"b™ :n < m}
and Ly = {a"d™ : n > m}, both of which are non-regular. But LiULs =
L (a*b*), which is regular.

{(a) The language is regular. This is most easily seen by splitting the
problem into cases such as { =0,k = 0,n > 5, for which one can easily
construct regular expressions.

(b} This language is not regular. If we choose w = aaaaaab™a™, our
opponent has several choices. If y consists of only a’s, we use i = 0 to
violate the condition n > 5. If the opponent chooses y as consisting of
b’s, we can then violate the condition k < [.

L is regular. We see this from L = L; N L and the known closures for
regular languages.

(a) The language is regular, since any string that has two consecutive
symbols the same is in the language. A regular expression for L is
(a+0b)(a+b)" (aa+bb) (a+b) (a+b)".

378 ANSWERS

(b) The language is not regular. Take w = (ab)™ aa (ba)™. The adver-
sary now has several choices, such as y = (ab)* or y = (ab)" a. In the
first case

wo = (ab)™ " aa (ba)™ .

Since the only possible identification is ww! = blaab!, wy is not in L.
With the second choice, the length of wp is odd, so it cannot be in L
either.

15. Take L; = a’b*,i = 0,1, For each 4, L; is finite and therefore regular,
but the union of all the languages is the non-regular language L =
{a™b" i n = 0}.

17. No, it is not. As counterexample, take the languages

L; = {U,-uvzR il =i}u {’l).,;’U,L-R tul <i},i=0,1,2,..

We claim that the union of all the L; is the set {wwH}. To justify
this, take any string z = ww®, with |w| = n. If n > 4, then z €
{viuvf : |v;| = i} and thereforein L;. If n < 4, then z € {vioff o vl < i},
i={0,1,2,...} and so also in L;. Consequently, z is in the union of all
the L;.

Conversely, take any string z of length m that is in all of the L;. If
we take i greater than m, z cannot be in {mu'v,in' vl = L} because il
is not long enough. Tt must thercfore be in {vvf* : Jv;| < i}, so that it
has the form ww?.

As the final step we must show that for each ¢, L; is regular. Thisg
follows from the fact that for cach ¢ there are only a finite number of
substrings ;.

Chapter 5
Section 5.1

4. Tt is quite obvious that any string generated by this grammar has the
same number of a’s as b's. To show that the prefix condition n, (v} >
ny, (v) holds, we carry out an induction on the length of the derivation.
Suppose that for every sentential form derived from & in » steps this
condition holds. To get a sentential form in n + 1 steps, we can apply
S — Xor 8 — SS. Since neither of these changes the number of a’s and
b’s or the location of those alrcady there, the prefix condition continues
to hold. Alternatively, we apply S — aSb. This adds an extra a and
an extra b, but since the added a is to the left of the added b, the prefix
condition will still be satisfied. Thus, if the prefix condition holds after
n steps, it will still hold after n+1 steps. Obviously, the prefix condition
holds after one step, so we have a basis and the induction succeeds.

7.

12.

15.

SOLUTIONS AND HINTS FOR SELECTED FXERCISES 379

(a) First, solve the case n = m + 3. Then add more #s. This can be
done by

S — aaaA
A — aAb|B
B — BblA

But this is incomplete since it creates at least three a’s. To take care
of the cagses n =10,1, 2, we add

S — Aad|acA

(d) This has an unexpectedly simple solution

S — aSbb|a.Sbbb| A.

These productions nondeterministically produce either bb or bbb for each
generated a.

(a) For the first case n = m and k is arbitrary. This can be achieved by

81 = AC
A — aAb|X
C — Cc|A

In the second case, n is arbitrary and m < k. Here we use

Sy — BD
B — aBlA
D — bDc|E
E — Ee|\

Finally, we start productions with § — $7|55.

(e) Split the problem into two cases: n =k +m and m = k + n. The
first case is solved by

S — aSe|S1| A
Sl = aSlb]/\
(a) If § derives L, then S; — SS derives L2.

It is normally not possible to use a grammar for L directly to get a
grammar for L, so we need another, hopefully recursive description for

380 ANSWERS

19.

T. This is a little hard to see here. One obvious subset of L contains
the strings of odd length, but this is not all.

Suppose we have an even length string that is not of the form ww®.

Working from the center to the left and to the right simultaneously,
compare corresponding symbols. While some part around the center
can be of the form ww®, at some point we get an a on the left and a b
in the corresponding place on the right, or vice versa. The string must
therefore be of the form uaww®hv or ubww®av with |u| = |v]. Once
we see this, we can then construct grammars for these types of strings.
One solution is

S — ASA|B
A= alb

B — bCalaCh

C — aCa |bCh| A

The first two productions generate the u and v, the third the two dis-
agreeing symbols, and the last the innermost palindrome,

The only possible derivations start with

5 = aaB = aala = aabBba = aabAaba.

But this sentential form has the suffix aba so it cannot possibly lead to
the sentence aabbabba.

22. E — E + E|E.E| E* |(E)| \|@.

Section 5.2

2.

A solution is

S~ agA, A — aAB}b,B — b.

Note that the more obvious grammar

S5 — a5 B
Sl — aSlB|/\
B—b

is not an s-grammar.

6. There are two leftmost derivations for w = aab.

S = aaB = qab
S = AB = AaB = aaB = aab.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 381

9. From the dfa for a regular language we can get a regular grammar by
the method of Theorem 3.4. The grammar is an s-grammar except for
gy — A But this rule does not create any ambiguity. Since the dfa
never has a choice, there is never any choice in the production that can
be applied.

14. Ambiguity of the grammar is obvious from the derivations
S = aSb=ab
S = 55 = abS = ab.
An equivalent unambiguous grammar is
S — AlA
A — aAblab| AA.
It is not easy to see that this grammar is unambiguous. To make it
plausible, consider the two typical situations, w = aabb, which can only
be derived by starting with A — aAb, and w = abab, which can only

be derived starting with A — AA. More complicated strings are built
from these two situations, so they can be parsed only in one way.

20. Solution:
S — aAlaAA
A — bAb|bb.
Chapter 6
Section 6.1

3. Use the rule in Theorem 6.1 to substitute for B in the first grammar.
Then B becomes useless and the associated productions can be removed.
By Theorems 6.1 and 6.2 the two grammars are equivalent.

&. The only nullable variable is A, so removing A-productions gives

- 8 — aAla|aBB
% A — aaAlaa
473 B — bC|bbC
ol
“ J/ C — B.
é .,"‘} e C — B is the only unit-production and removing it results in
1A $ — aAla|aBB
= e A = aaAlaa
:) B — bC|bbC

C — bC|bbC.

382

ANSWERS

Finally, B and C are useless, so we get

S — adla

A — agA|aa.

The language generated by this grammar is L ((aa)” a).
14. An example is
S —aA
A— BB
B — aBb}:.

When we remove A-productions we get

S — adla
A — BB|B
B — aBb|ab.

16. This is obvious since the removal of useless productions never adds
anything to the grammar.

21. The grammar S — aA; A — a does not have any useless productions,
any unit productions, or any A-productions. But it is not minimal since
S — aa is an equivalent grammar.

Section 6.2
5. First we must eliminate A-productions. This gives
S — AB|B|aB
A — aab
B — bbAbb.

This has introduced a unit-production, which is not acceptable in the
construction of Theorem 6.6. Removal of this unit-production is easy.
S — AB |bbA| aB|bb
A — aab
B — bbA|bb.

We can now apply the construction and get

S — AB|ViVi 4| Vo B[V V4
A= VWiV
B — ViVpAV Vs

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 383

and
S — AB |V, AV, B|VsV,
A — ViV
B — VA,V
Ve = WV,
Vi = VoW
Vo —a
Vi, — b

8. Consider the general form for a production in a linear grammar

12,

15.

A— Ct](lg...aanlbz...bn-L.

Introduce -a new variable V; with the productions

‘/1 - ag...aanlbg...bm

and

A— a1V1.

Continue this process, introducing V5 and

Vg — ag...aanlbz...bm

and so on, until no terminals remain on the left. Then use a similar
process to remove terminals on the right.

This normal form can be reached easily from CNF. Productions of the
form A — BC are permitted since a = A is possible. For A — a, create
new variables V1, V5 and productions A — aViVo, Vi — A, Vo2 — AL

Solutions: § — aV, |a8]aV,8, Vo — a, Vi, — b,

Only A — bABC is not in the required form, so we introduce A — bAV
and V — BC. The latter is not in correct form, but after substituting
for B, wc have

5 —aSA

A — bAV

V=0

C — aBC.

Section 6.3

2. Since aab is a prefix of the string in Example 6.11, we can use the

V;; computed there. Since S € Vi3, the string aab is in the language
generated by the grammar and can therefore be parsed.

384

ANSWERS

For parsing, we determine the productions that were used in justi-
fying S € Via:
S € Vi3 because S — AB, with A € V}; and B € Va3
A € Vi) because A — a
B € Va3 because B — AB, with A € Vo, B € Vag
A € Vi because A — a
B € V33 because B — b.

This shows all the productions needed to justify membership; these can
then be used in the parsing

S = AB = aB = aAB = aaB = aab.

Chapter 7
Section 7.1

2. The key to the argument is the switch from ¢y to g1, which is done

nondeterministically and need not happen in the middle of the string.
However, if a switch is made at some other point or if the input is not of
the form ww!, an accepting configuration cannot be reached. Suppose
the content of the stack at the time of the switch is zy2s...252. To accept
a string we must get to the configuration (g, A, z). By examining the
transition function, we see that we can get to this configuration only if
at this point the unread part of the input is ximxs...x, that is, if the
original input is of the form ww® and the switch was made exactly in
the middle of the input string.

. {a) The solution is obtained by letting each a put two markers on the

stack, while each b consumes one. Solution:

d{qu, A, z) = {(gr,2)}
6(Q09a7z) = {(Ql! 11Z)}

d(go,a,1) = {{q1,111)}
5(‘]131)’ 1) = {(QIaA)}
6 (g1, A, 2) = {(ar,2)}-

(f) Here we use nondeterminism to-generate one, two, or three tokens
by

0 ((IO’ a, z) = {(qh 12,’) ? ((Ila 112) i (q17 1112”)}

and

5(Q0va’ Z) = {(qla 11) ’ (Q10, 111)) (lh, 1111)} .

11.

14.

16.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 385

The rest of the solution is then essentially the same as 4(a).

This is a pda that makes no use of the stack, so that is, in cffect, a
finite accepter. The state transitions can then be taken directly from
the pda, to give

d(q0,0) = qu
4 (g0, 0) = qo
d(qr,a) =q
(g1,b) = qo

Trace through the process, taking one path at a time. The transition
from go to ¢z can be made with a single ¢. The alternative path requires
one a, followed by one or more b's, terminated by an a. These are the
only choices. The pda therefore accepts the language

L ={a} UL (abb*a).
Here we are not allowed enough states to track the switch from a’s to

b’s and back. To overcome this, we put a symbol in the stack that
remembers where in the sequence we are. For example, a solution is

0 (q0,a,2) = {(q0, 1)},
6(q0,a,1) = {(go, 1)},
6 (g0,6,1) = {(q0,2)},
(g0, @, 2) = {(q0,2)},
4 (a0, A, 2) = {(gr,2)} .

We have only two states, the initial state go and the accepting state g;.
What would normally be tracked by different states is now tracked by
the symbol in the stack.

Here we use internal states to remember symbols to be put on the stack.
For example,

6 (gi, a, b) = {(g;, cde)}
is replaced by

0 (Qia a, b) = {(qjcv de)_}
J (qjm >\7 d) = {.(q‘jv Cd)} .
Since ¢ can have only a finite number of elements and each can only

add a finite amount of information to the stack, this construction can
be carried out for any pda.

386

ANSWERS

Section 7.2

3. You can follow the construction of Theorem 7.1 or you can notice that

11.

the language is {a™t2b?"T! :n > 0}. With the latter observation we
get a solution

8 (qu,a,z) = {{q, 2)}

6 (q1,a,2) = {(g2,2)}

8 (g2,a,2) = {(g2,112)}
(g2 a,1) = {(q2, 111)}
d(g2,6,1) = {(gs, 1)}

6 (g3, 0,1) = {(g3, M)}

6 (gs, A 2) = {(ay,2)}

where ¢p is the initial state and ¢y is the final state.

First convert the grammar into Gricbach normal form, giving § —
aSS8; 8§ — aB; B — b. Then follow the construction of Theorem 7.1.

6 (qos M 2) = {{q1, 82)}
§(q1,a,8) = {(q,555),(q1, B)}
8 (q,b,B) = {(g1,\) }

8 (g1, X 2) ={(gr,2)}.

. From Theorem 7.2, given any npda, we can construct an equivalent

context-free grammar. From that grammar we can then construct an
equivalent three-state npda, using Theorem 7.1. Because of the transi-
tivity of equivalence, the original and the final npda’s are also equiva-
lent,.

. We first obtain a grammar in Greibach normal form for L, for example

S — aSB|b, B — b. Next, we apply the construction in Theorem 7.1 to
get an npda with three states, go, ¢1,¢. The state ¢; can be eliminated
if we use a special stack symbol z; to mark it. A complete solution is

(g0, A 2) = {(qo, Sz1)}
8 (q0,a,8) = {(go, SB)}
4 (0, b, 8) = {(g0,)}
6 (go, b, B) = {(g0, A)}
(g0, 21) = {(g, M)}

There must be at least one a to get started. After that, §{qo,a, A) =
{(go, A)} simply reads a’s without changing the stack. Finally, when

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 387

the first b is encountered, the pda goes into state ¢;, from which it can
only make a A-transition to the final state. Therefore, a string will be
accepted if and only if it consists of one or more a’s, followed by a single
b.

Section 7.3

4.

11.

15.

16.

At first glance, this may seem to be a nondeterministic language, since
the prefix a calls for two different types of suffixes. Nevertheless, the
language is deterministic, as we can construct a dpda. This dpda, goes
into a final state when the first input symbol is an a. If more sym-
bols follow, it goes out of this state and then accepts a™5”. Complete
solution:

4 (qu, a,2) = {(g3,12)}
6 (a3,a,1) = {(g1,11)}
d{a1,a,1) = {(q1,11)}
d(q1,6,1) = {(q1, M)}
(g1, A 2) = {(qz,2)}

where F' = {g2, 43}

The solution is straightforward. Put a’s and &’s on the stack. The ¢
signals the switch from saving to matching, so everything can be done
deterministically.

There are two states, the initial, non-accepting state gy and the fi-
nal state g;. The pda will be in state ¢ unless a z is on top of the
stack. When this happens, the pda will switch states to gy. The rest
is essentially the samc as Example 7.3. Thus we have §(qq,a,2) =
{(g1,02)},6(q1,0,0) = {(¢,00)}, ete. with 6(g1,A 2) = {(q0,2)}.
When you write this all out, you will see that the pda is deterministic.

This is obvious since every regular language can be accepted by a dfa
and such a dfa is a dpda with an unused stack.

The basic idea here is to combine a dpda with a dfa along the lines of
the construction in Theorem 4.1, with the stack handled as it is for L.
It should not be too hard to see that the result is a dpda.

Section 7.4

2.

Consider the strings aabb and aabbbbaa. In the first case, the derivation
must start with S = aSB, while in the second § = 55 is the necessary
first step. But if we see only the first four symbols, we cannot decide
which case applies. The grammar is therefore not in LL (4). Since

388

ANSWERS

similar examples can be made for arbitrarily long strings, the grammar
is not L.L (k) for any k.

Look at the first three symbols. If they are aaa, aab, or aba, then the
string can only be in L (a*ba). If the first three symbols are abb, then
any parsable string must be in L (abbb*). For each case, we can find an
LL grammar and the two can be combined in an obvious fashion. A
solution is

S — 51|92
S — aSilba
Sy — abbB
B — bB|A

Looking at the first three symbols tells us if § = S; or § = Sy is
necessary. The grammar is therefore LL (3).

. For a deterministic CFL there exists a dpda. When this dpda is con-

verted into a grammar, the grammar is unambiguous.
(a)

S — aSe|Si| A
81 — bS1¢A.

This is almost an s-grammar. As long as the currently scanned symbol
is @, we must apply § — a8k, if it is b, we must use § — Sy, if it is ¢,
wo can only use S — A. The grammar is LL (1).

Chapter 8
Section 8.1

3.

Take w = a™b™b"a™a™b™. The adversary now has several choices
that have to be considered. If, for example, v = a* and y = a!, with v
and y located in the prefix a™, then

wy = a]m——k:—l R e o b ,

which is not in L. There are a number of other possible choices, but in
all cases the string can be pumped out of the language.

. (a) Use the pumping lemma. Given m, pick w = a™’b™. The only

choice of v and y that needs any serious examination is v = a* and

10.

12,

15.

20.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 389

y = b, with k and ! non-zero. Suppose that [= 1. Then choose i = 2,
so that ws has m® + k a’s and m + 1 b’s. But

(m+1°=m?+2m+1
>m? + k.

Since wy is not in the language, the language cannot be context-free.
Similar arguments hold a fortiori for { > 1.

(f) Given m, choose w == a™b™1c¢™+2, which is easily pumped out of
the language.

(b) The language is not context-free. Use the pumping lemma with
w =a"b™a™b™ and examine various choices of v and y.

Perhaps surprisingly, this language is context-free. Construct an npda
that counts to some value k (by putting &k tokens on the stack) and
remembers the k-th symbol. It then examines the k-th symbol in wy. If
this does not match the remembered symbol, the string is accepted. If
w € L there must be some & for which this happens. The npda chooses
the k£ nondeterministically.

Use the pumping lemma for linear languages. With a given m, choose
w = a™b*™a™. Now v and y are entirely made of a’s, so w is easily
pumped out of the language.

The language is not linear. With the pumping lemma, use
w=(..(a)...) + (... (@) ...)

where (...(and)...) stand for m left or right parentheses, respectively.
If |u| = 1, we can easily pump so that for some prefix v, n (v) < ny (v)
which results in an improper expression. Similar arguments hold for
other decompositions.

Use w = a”, where p and ¢ are primes such that p > m and g > m. If
|vy| = k, then

[wi1] = pg + k.

If we choose i = pq, then

§
pq(l+k
Wil — @ (),

which is not in the language.

390

ANSWERS

Section 8.2

1.

13.

15.

21.

The complement is context-free. The complement involves two cases:
n, (w) # np (w) and n, (w) # ne (w). These in turn can be broken into
Na (W) > np (W), Ng (W) > ne (W), Ng (W) < np (w), and 1y (W) < ne (W).
Each of these is context-free as can be shown by construction of a CFG.
The full language is then the union of these four cases and by closure
under union is context-free.

. Given a context-free grammar G, construct a context-free grammar G

by replacing every production A — z by A — xF. We can then show
by an induction on the number of steps in a derivation that if w is a
sentential form for G then wf is a sentential form for G.

. Given two linear grammars G, = (V1,T, S1, P1) and G2 = (V2, T, S2, P»)

-~

with V1NV, = @, form the combined grammar G = (Vi U Vo, T, 5, PLU P,
US — 81|82). Then @ is linear and L (6’) = L (G1) U L(Ga).
To show that linear languages are not closed under concatenation, take

the linear language L = {a"b™ : n > 1}. The language L? is not linear
as can be shown by an application of the pumping lemma.

Let G; = (Vi,T,81,P1) be a linear grammar for L; and let G2 =
(Va,T, Sa, P;) be a left-linear grammar for L,. Construct a grammar
G, from G by replacing every production of the form V — z, 2z € T*
with V — 8,z. Combine grammars Gy and Gz, choosing S as a start
symbol. It is then easily shown that in this grammar

S = S1w = uw

if and only if u € Ly, and w € Ls.

The languages L1 = {a™b"c™} and Ly = {a"b™c™} are both unam-
biguous. But their intersection is not even context-free,

A € L(G) if and only if S is nullable.

Chapter 9

Section 9.1

2.

A three-state solution that scans the entire input is

5(Q0aa') = (QI,U«aR)
5(&]1,(1) = 5((1176) = (Q1,G,R)
J(qlam) = (q27D7R)

with F' = {¢a2}-

10.

12.

19.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 391

It is also possible to get a two-state solution by just examining the first
symbol and ignoring the rest of the input, for example,

4 (‘IOaa) = (q29a7 R) .

- (a)
é (qua) (QI!a” R)
6(q1,b) = (g2,b, R)
) 5((12,(1) = (Q2,aa R)
6(‘]2-; b) = (q3,b> R)

with F = {g3}.

(b)
(5((]0,&) = 6(q0’b) = (ql7D’R)
9(g0,0) = (2,0, R)
5((]1,&) = 5((]1,1)) = (quDaR)
with F' = {gz}.

The solution is conceptually simple, but tedious to write out in detail.
The general scheme looks something like this:

(i) Place a marker symbol ¢ at each end of the string.

(ii) Replace the two-symbol combination ca on the left by ac and the
two-symbol combination ae on the right by ca. Repeat until the
two ¢’s meet in the middle of the string.

(iii) Remove one of the ¢’s and move the rest of the string to fill the
gap. '

Obviously this is a long job, but it is typical of the cumbersome ways
in which Turing machines often do simple things.

We cannot just search in one direction since we don’t know when to
stop. We must proceed in a back-and-forth fashion, placing markers
at the right and left boundaries of the searched region and moving the
markers outward.

If the final state set £ contains more than one element, introduce a new
final state gy and the transitions

d (‘La) = (C.If!a9 R)

forallge Fand a eT,

392

ANSWERS

Section 9.2

3. (a) We can think of the machine as constituted of two main parts, an
add-one machine that just adds one to the input, and a multiplier that
multiplies two numbers. Schematically they are combined in a simple
fashion.

5. (c) First, split the input into two equal parts. This can be done as
suggested in Exercise 10, Section 9.1. Then compare the two parts,
symbol by corresponding symbol until a mismatch is found.

8. A solution:
4 (qo,a) = (q'iva'vR) »
8 (g0,¢) = (qo, ¢, R) for all c€ ¥ - {a},
) (q07 D) = (QJ! Dv R) .
The state go is any state in which the searchright instruction may be
applied.
Section 9.3

2. We have ignored the fact that a Turing machine, as defined so far, is
deterministic, while a pda can be non-deterministic. Therefore, we can-
not yet claim that Turing machines are more powerful than a pushdown
automata.

Chapter 10
Section 10.1

4. (a) The machine has a transition function

§:QxI'-QxIx{L,R,S}

with the restriction that for all transitions 6 (¢;,a) = (g;,b, L or R), the
condition a = b must hold.

(b) To simulate 6 (g;,a) = (g;,b, L) with a # b of the standard ma-
chine, we introduce new transitions & (g;,a) = (g;r,b, S) and d (g;1,b) =
(gj,b,L) for all c € T', and so on.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 393

6. We introduce a pseudo-blank B. Whenever the original machine wants

11.

to write [J, the new machine writes B. Then, for each ¢ (g;,(J) =
(g;,b, L) we add 6 (¢;, B) = (g;,b, L), aud so on. Of course, the original
transition 6 (¢;,3) = (g;, b, L) must be retained to handle blanks that
are originally on the tape.

This does not limit the power of the machine. For each symbol a € T,
we introduce a pseudo-symbol, say A. Whenever we need to preserve
this a, we first write A, then return to the cell in question to replace A
by a.

We replace
6 (qi; {a,b}) = (g5, ¢, R)
by
0(¢:, d) = (gj,¢, R)

for all d € T' — {a, b}.

Section 10.2

1.

For the formal definition use I'r = I'x I'x .. xTand § : Q@ xT'r —
Q x ' x {L,R}™, where m is the number of read-write heads. One
issue to consider is what happens when two read-write heads are on
the same cell. The formal definition must provide for the resolution of
possible conflicts.

To simulate the original machine (OM) by a standard Turing ma-
chine (SM), we let SM have m + 1 tracks. On one track we will keep
the tape contents of the OM, while the other m tracks are used to show
the position of OM’s tape heads.

1 b e d tape content of OM

X [] position of tape head # 1

position of tape head # 2

SM will simulate each move of OM by scanning and updating its active
area.

4. This exercise shows that a queue machine is equivalent to a standard

Turing machine and that therefore a queue is a more powerful storage

394 ANSWERS

device than a stack. To simulate a standard TM by a queue machine,
we can, for example, keep the right side of the OM in the front of the
queue, the left side in the back.

(read-write head

a b c d e f g | tape of OM
c ' d ¢ £ " a , | Simulation
& by queue

A right move is easy as we just remove the front symbol in the queue
and place something in the back. A left move, however, goes against
the grain, so the queue contents have to be circulated several times to
get everything in the right place. It helps to use additional markers ¥
and Z to denote boundaries. For example, to simulate

§ (qiv C) = (qjv Z, L)
we carry out the following steps.

(i) Remove c from the front and add zY to the back.
(ii) Circulate contents to get bzY defgXa.

(iii) Add Z to the back, then circulate, discarding Y and Z as they
come to the front.

8. We need just two tapes, one that mirrors the tape of the OM, the
second that stores the state of the OM.

a b c d ¢ configuration of OM

configuration of SM

SM needs only two states: an accepting and a non-accepting state.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 395

Section 10.3

3. (i) Start at the left of the input. Remember the symbol by putting
the machine in the appropriate state. Then replace it with X.

(ii) Move the read-write head to the right, stopping (nondeterministi-
cally) at the center of the input.

(iii) Compare the symbol there with the remembered one. If they
- match, write ¥ in the cell. If they don’t match, reject input.

(iv) With the center of the input marked with Y, we can now proceed
deterministically, alternatively moving left and right, comparing
symbols.

For a completely deterministic solution, we first find the center of the
input (e.g. by putting markers at cach end, and moving them inwards
until they meet).

6. Nondeterministically choose a value for n. Determine if the length of
the input is a multiple of n. If it is, accept. If ™ € I, then there is
some n for which this works.

Section 10.4

3. An algorithm, in outline, is as follows.

(i) Start with a copy of the preceding string.

(ii) Find the rightmost 0. Change it to a 1. Then change all the 1’s
to the right of this to 0’s.

(iii) If there are no 0’s, change all 1’s to 0’s and add a 1 on the left.
(iv) Repeat from step (i).

8. Let S1 = {s1,$2,...} and Sy = {t1,¢5,...} Then their union can be
enumerated by

Sl U SQ = {.5'1,7'31,52,'[52, } .

If some s; = t;j, we list it only once. The union of the two sets is
therefore countable. For Sy x Sz, use the ordering in Figure 10.17.

Section 10.5

2. First, divide the input by two and move result to one part of tape. This
frec space initially occupied by the input. This space can then be used
to store successive divisors,

396

ANSWERS

4. (e) Use a three-track machine as shown below. On the third track,

we keep the current trial value for |w|. On the second track, we place
dividers every |w| cells. We then compare the cell contents between the
markers.
a - d] [d input
X ' dividers

i | | trial value of lwl

. Use Exercise 16, Section 6.2 to find a grammar in two-standard form.

Then use the construction in Theorem 7.1. The pda we get from this
consumes one input symbol on every move and never increases the stack
contents by more than one symbol each time.

. Example:
c t g - d Configuration of OM
—» a —l
g d
Stack Configurations
f
e
Stackl Stack2

Stackl contains the symbol under the read-write head of the OM and
everything on the left. Stack2 contains all the information to the right
of the read-write head. Left and right moves of the OM are easily sim-
ulated. For example, 6 (g;,a) = (g;, b, L) can be simulated by popping
the a off Stackl and putting a b on StackZ.

Chapter 11
Section 11.1

2. We know that the union of two countable sets is countable and that the

set of all recursively enumerable languages is countable. If the set of

11.

14.

18.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 397

all languages that are not recursively enumerable were also countable,
then the set of all languages would be countable. But this is not the
case, as we know.

. Let L; and Lo be two recursively enumerable languages and M; and

My be the respective Turing machines that accept these two languages.
When represented with an input w, we nondeterministically choose M,
or M to process w. The result is a Turing machine that accepts Ly ULs.

A context-free language is recursive, so by Theorem 11.4 its complement
is also recursive. Note, however, that the complement is not necessarily
context-free.

For any given w € L¥, consider all splits w = wiwsy...w,,. For each
split, determine whether or not w; € L. Since for each w there are only
a finite number of splits, we can decide whether or not w ¢ LT,

The argument attempting to show by diagonalization that 2% is not
countable for finite S fails because the table in Figure 11.2 is not square,
having |2%| rows and |S| columns.

IS1 columns

When we diagonalize, the result on the diagonal could be in one of the
rows below.

Section 11.2

1%

Look at a typical derivation:

S = a5,bB = aaSbbB = a"S1b"B = o™t IR = "B =

From this it is not hard to conjecture that the grammar derives

L={a""""** n>1k=-1,13,..}.

398 ANSWERS

3, Formally, the grammar can be described by G = (V, S, T, P), with S ¢
(VuT)" and

L{(GY={xeT":s=quforany s € §}.
The unrestricted grammars in Definition 11.3 arc cquivalent to this

extension because to any given unrestricted grammar we can always
add starting rules Sy — s; for all 5; € §.

7. To get this form for unrestricted grammars, insert dummy variables on
the right whenever |u| > |v|. For example,

AB—C

can be replaced by

ADB — CD
D— .

The equivalence argument is straightforward.

Section 11.3
1. (¢) Working with context-sensitive grammars is not always easy. The
idea of a messenger, introduced in Example 11.2, is often useful.

In this problem, the first step is to create the sentential form a™ Be™ D.
The variables B and D will act as markers and messengers to assure
that the correct number of &’s and d’s are created in the right places.
The first part is achieved easily with the productions

S — aAcDjaBcD
A — aAc|aBe.

In the next step, the B travels to the right to meet the D, by

Be — cB
Bb — bB.

When that happens, we can create one d and a return messenger that
will put the b in the right place and stop.

BD — Ed
cE — Ee
bE — Eb
oFE — ab.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 399

Alternatively, we create a d plus a marker D, with a different messenger
that creates a b, but keeps the process going:
" BD— FDd
cF — Fe
bF — Fb
aF — abB.

The easiest argument is from an lba. Suppose that a language is
context-sensitive. Then there exists an lba M that accepts it. Given
w, we first rewrite it as w’’, then apply M to it. Because L* =
{w:w® e L}, M accepts w™ if and only if w € L®. The machine

" that reverses a string and applies M is an lba. Therefore L¥ is context-

sensitive.

We can argue from an lba. Clearly, there is an lba that can recognize
any string of the form wuw. Just start at opposite ends and compare
gymbols until you get a match. Since there is an lba, the language is
context-sensitive and a context-sensitive grammar must exist.

Chapter 12
Section 12.1

3.

10.

Given M and w, modify M to get M , Which halts if and only if a
special symbol, say an introduced symbol #, is written. We can do this
by changing the halting configurations of M so that every one writes
#, then stops. Thus, M halts implies the M writes #, and M writes
implies that M halts. Thus, if we have an algorithm that tells us
whether or not a specified symbol a is ever written, we apply it to M
with a = #. This would solve the halting problem.

Given (M, w) modify M to M so that (M,w) halts if and only if M
accepts some simple language, say {a}. This can be done by M first
checking the input and remembering whether the input was a. Then
M carries out its normal computations. When it halts, check if the
input was a. Accept if so, reject otherwise. Therefore M accepts {a} if
and only if M halts. Now construct a simple Turing machine, say M,
that accepts a. If we had an algorithm that checks for the equality of
two languages, we could use it to see if L (M) =L(M). If L (M) =
L (M) then (M,w) halts. If L (M) # L (M) then (M, w) does not

halt and we have a solution to the halting problem.

Given (M, w) we modify M so that it always halts in the configuration
grw. If the given problem was decidable, we could apply the supposed
algorithm to the modified machine, with configurations gow and gyw.
This would give us a solution of the halting problem.

400

ANSWERS

13.

16.

Take a universal Turing machine and let it simulate computations on
an empty tape. Whenever the simulated computations halt, accept
the Turing machine being simulated. The universal Turing machine is
therefore an accepter for all Turing machines that halt when applied to
a blank tape. The set is therefore recursively enumerable.

Suppose now the set were recursive. There would then exist an algo-
rithm A that lists all Turing machines that halt on a blank tape input
in some order of increasing lengths of the program. See if the original
Turing machine is amongst the Turing machines generated by A. Since
the length of the original program is fixed, the comparison will stop
when this length is exceeded. Thus, we have-a solution to the blank
tape halting problem.

If the specific instances of the problem are p;, ps, ..., pp, We construct a
Turing machine that behaves as follows:

if problem = p; then return false

if problem = p; then return true

if problem = p,, then return true

Whatever the truth values of the various instances are, there is always
some Turing machine that gives the right answer. Remember that it
is not necessary to know what the Turing machine actually is, only to
guarantee that it exists.

Section 12.2

3.

Suppose we had an algorithm to decide whether or not L (M;) C
L (Ms). We could then construct a machine My such that L (Mp) = &
and apply the algorithm, Then L (M) € L (Mz) ifand only if L (M) =
@. But this contradicts Theorem 12.3, since we can construct M; from
any given grammar G.

If we take L (G3) = £*, the problem becomes the question of Theorem
12.3 and is therefore undecidable.

. Since there are some grammars for which L (G) = L (G)* and some for

which this is not so, the undecidability follows from Rice’s theorem.
To do this from first principles is a little harder. Take the halting
problem (M,w) and _modify it (along the lines of Theorem 12.4), s

that if (M, w) halts, M will accept {a} and if (M, w) does not halt, M

accepts @. From M get the grammar G by the construction leading to
Theorem 11.7. If L (7\/.7) = {a}*, then L (@) L() = {a}*. But

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 401

if L (JTZ) — o, then L (é) ~ @and L (é) = {A}. Therefore, if this
problem were decidable, we could get a solution of the halting problem.

Section 12.3

1. A PC-solution is wawaw, = vsvgvr. There is no MPC-solution because
one string would have a prefix 001, the other 01.

3. For a one-letter alphabet, there is a PC-solution if and only if there is
some subset J of {1,2,...,n} such that

> lwsl ="l

Jjed JeT
Since there are only a finite number of subsets, they can all be checked

and therefore the problem is decidable.

5. (a) The problem is undecidable. If it were decidable, we would have
an algorithm for deciding the original MPC-problem. Given wy, ws...,
Wy, we form wf,wf...,wl and use the assumed algorithm. Since

W Wy WE = (wf...wiﬂwlR)R, the original MPC-problem has a solution

if and only if the new MPC-problem has a solution.

Chapter 13
Section 13.1

2. Using the function subtr in Example 13.3, we get the solution

greater (z,y) = subtr (1, subtr (1, subtr (z,y))) .

g (z,y) = mult (z,9 (z,y — 1)),
g(z,0) =1

A(lay) :A(OaA(]-’y_ 1))

=A(lL,y—1)+1
=A(1,0)+y

=y+2

402

ANSWERS

(b) With the results of part (a) we can use induction to prove the next
identity. Assume that for y = 1,2,...,n — 1, we have A (2,y) = 2y + 3.
Then

A(2,n)=A1,A(2,n—-1))
=A(,2n+1)
= 2n + 3, from part (a).

Since

we have a basis and the equation is true for all y.

15. If 2 + y — 3 = 0, then y = 3 — 2. The only values of x that give a
positive y are 0 and 1, so the domain of p is {0, 1}, giving a minimum
value of y = 1. Therefore

py (2°+y-3) =1
Section 13.2

1. (b) Use Cr = {a,b,¢}, Cx = {2} and A = {z}. The non-terminal z is
used as a boundary between the left and right side of the target string
and the two w's are built simultaneously by

VizVa — ViazVaa |VibzVab| VicxVac.
At the end, the z is removed by

VizVe = 1 V3.

3. At every step, the only possible identification of V; is with the entire
derived string. This results in a doubling of the string and

LZ{CLQTL:TLZI}.

5. A solution is

Vi*Vo=Vz = Vi1 Vo = V3V}
Vi*sVo=V3 — Vi*Wl=VaV.

*For example

lel=1=11%1=11=11%11=1111,

and so on.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 403

Section 13.3

1.

5.

P -8 — 55

P : 5 — ab;,5 — aS;
P;: 51 — 051,85 — bSy
Py- 5 —)\ S — A

The solution here is reminiscent of the use of messengers with context-
sensitive grammars.

ab— z
b — bx
re — A

. Although this is not so easy to see, this is one way to solve Exercise 7.

Take any string, say a?°. This can be derived from a'?? by applying
a — aaa once and & — aa 126 times. Then a'?? can be derived from
a%® in a similar way, and so on. Thus every string in L (aa*) can be
derived.

